

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	guv 0.35.2 documentation

guv Documentation

Note

The documentation is currently in very active developemnt and not yet
complete. Please keep checking back for updates and filing issues for
missing sections or suggestions for enhancement.

Contents

	How does guv work?

	Library Support

	Module Reference
	guv.const - constants

	guv.event - event primitive for greenthreads

	guv.greenpool - greenthread pools

	guv.greenthread - cooperative threads

	guv.patcher - monkey-patching the standard library

	guv.queue - greenthread-compatible queue

	guv.semaphore - greenthread-compatible semaphore

	guv.hubs.switch - facilities for cooperative yielding

	guv.timeout - universal timeouts

	guv.websocket - websocket server

	guv.wsgi - WSGI server

Introduction

guv is a fast networking library and WSGI server (like gevent/eventlet) for
Python >= 3.2 and pypy3

The event loop backend is pyuv_cffi [https://github.com/veegee/guv/tree/develop/pyuv_cffi], which aims to be fully compatible with the
pyuv [https://github.com/saghul/pyuv] interface. pyuv_cffi is fully supported on CPython and pypy3. libuv [https://github.com/libuv/libuv]
>= 1.0.0 is required.

Asynchronous DNS queries are supported via dnspython3. To forcefully disable
greendns, set the environment variable GUV_NO_GREENDNS to any value.

guv currently only runs on POSIX-compliant operating systems, but Windows
support is not far off and can be added in the near future if there is a demand
for this.

This library is actively maintained and has a zero bug policy. Please submit
issues and pull requests, and bugs will be fixed immediately.

This project is under active development and any help is appreciated.

Quickstart

Since guv is currently in alpha release state and under active development, it
is recommended to pull often and install manually:

git clone https://github.com/veegee/guv.git
cd guv
python setup.py install

Note: libuv [https://github.com/libuv/libuv] >= 1.0.0 is required. This is the first stable version but is a
recent release and may not be available in Debian/Ubuntu stable repositories, so
you must compile and install manually.

Serve your WSGI app using guv directly

import guv; guv.monkey_patch()
import guv.wsgi

app = <your WSGI app>

if __name__ == '__main__':
 server_sock = guv.listen(('0.0.0.0', 8001))
 guv.wsgi.serve(server_sock, app)

Serve your WSGI app using guv with gunicorn [https://github.com/benoitc/gunicorn]

gunicorn -w 4 -b 127.0.0.1:8001 -k guv.GuvWorker wsgi_app:app

Note: you can use wrk [https://github.com/wg/wrk] to benchmark the performance of guv.

Crawl the web: efficiently make multiple “simultaneous” requests

import guv; guv.monkey_patch()
import requests

def get_url(url):
 print('get_url({})'.format(url))
 return requests.get(url)

def main():
 urls = ['http://gnu.org'] * 10
 urls += ['https://eff.org'] * 10

 pool = guv.GreenPool()
 results = pool.starmap(get_url, zip(urls))

 for i, resp in enumerate(results):
 print('{}: done, length: {}'.format(i, len(resp.text)))

if __name__ == '__main__':
 main()

Guarantees

This library makes the following guarantees:

	Semantic versioning [http://semver.org] is strictly followed

	Compatible with Python >= 3.2.0 and PyPy3 >= 2.3.1 (Python 3.2.5)

Testing

guv uses the excellent tox and pytest frameworks. To run all tests, run
in the project root:

$ pip install pytest
$ py.test

 Copyright 2014, V G.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	guv 0.35.2 documentation

How guv works

The “old” way of writing servers

The classic server design involves blocking sockets, select.select() [http://docs.python.org/3.4/library/select.html#select.select], and
spawning operating system threads for each new client connection. The only
advantage of this method is the simplicity of its design. Although sufficient
for serving a very small number of clients, system resources quickly get maxed
out when spawning a large number of threads frequently, and
select.select() [http://docs.python.org/3.4/library/select.html#select.select] doesn’t scale well to a large number of open file
descriptors.

An improvement on this design is using a platform-specific poll() mechanism
such as epoll(), which handles polling a large number of file descriptors
much more efficiently.

However, the thread issue remains. Typical solutions involve implementing the
“reactor pattern” in an event loop using something like epoll(). The issue
with this approach is that all code runs in a single thread and one must be
careful not to block the thread in any way. Setting the socket file descriptors
to non-blocking mode helps in this aspect, but effectively using this design
pattern is difficult, and requires the cooperation of all parts of the system.

Coroutines, event loops, and monkey-patching

guv is an elegant solution to all of the problems mentioned above. It allows you
to write highly efficient code that looks like it’s running in its own thread,
and looks like it’s blocking. It does this by making use of greenlets [https://greenlet.readthedocs.org/en/latest/] instead
of operating system threads, and globally monkey-patching system modules to
cooperatively yield while waiting for I/O or other events. greenlets are
extremely light-weight, and all run in a single operating system thread;
switching between greenlets incurs very low overhead. Furthermore, only the
greenlets that need switching to will be switched to when I/O or another event
is ready; guv does not unnecessarily waste resources switching to greenlets that
don’t need attention.

For example, the socket module is one of the core modules which is
monkey-patched by guv. When using the patched socket module, calls to
socket.read() on a “blocking” socket will register interest in the file
descriptor, then cooperatively yield to another greenlet instead of blocking the
entire thread.

In addition, all monkey-patched modules are 100% API-compatible with the
original system modules, so this allows existing networking code to run without
modification as long as standard python modules are used. Code using C
extensions will require simple modifications to cooperate with guv, since it is
not possible to monkey-patch C code which may be making blocking function calls.

The hub and trampoline()

The “hub” (guv.hubs.abc.AbstractHub) is the core of guv and serves as
the “scheduler” for greenlets. All calls to spawn() (and related
functions) actually enqueue a request with the hub to spawn the greenlet on the
next event loop iteration. The hub itself is a subclass of
greenlet.greenlet

The hub also manages the underlying event loop (currently libuv only, but
implementations for any event loop library, or even custom event loops can
easily be written). Calls to monkey-patched functions actually register either a
timer or the underlying file descriptor with libuv and switch (“yield”) to the
hub greenlet.

The core function which facilitates the process of registering the file
descriptor of interest and switching to the hub is
trampoline(). Examining the source code of included
green modules reveals that this function is used extensively whenever interest
in I/O events for a file descriptor needs to be registered. Note that this
function does not need to be called by normal application code when writing code
with the guv library; this is only part of the core inner working of guv.

Another important function provided by guv for working with greenlets is
gyield(). This is a very simple function which simply
yields the current greenlet, and registers a callback to resume on the next
event loop iteration.

If you require providing support for a library which cannot make use of the
patched python standard socket module (such as the case for C extensions), then
it is necessary to provide a support module which calls either
trampoline() or gyield() when
there is a possibility that the C code will block for I/O.

For examples of support modules for common libraries, see the support modules
provided in the guv.support package.

 Copyright 2014, V G.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	guv 0.35.2 documentation

Library Support

The goal of guv is to support as many external libraries as possible such that
no modification to application code is necessary. However, note that it is still
required to use certain guv-specific constructs to take advantage of the
concurrency (as demonstrated in the examples directory).

Quick overview:

	If your application code and any library dependencies are pure-python and use
only standard library components like socket [http://docs.python.org/3.4/library/socket.html#module-socket], time [http://docs.python.org/3.4/library/time.html#module-time], os [http://docs.python.org/3.4/library/os.html#module-os],
etc., then your code is guaranteed to be compatible with guv.

	If your application code depends on libraries that make blocking I/O calls
from external C code (such as is the case for many popular database
drivers), then a support module must be available to make those specific
libraries cooperative. Such modules can be found in the guv.support [https://github.com/veegee/guv/tree/develop/guv/support] package and are all
enabled by default if the library is installed.

Note

If your code is using only standard library components and is behaving in a
non-cooperative way, this is considered a critical bug, which can be fixed
by greenifying the appropriate standard library modules. Please submit a bug
report to ensure that this issue is fixed as soon as possible.

List of Known Compatible Libraries

Pure-python libraries are guaranteed to be compatible with no additional
support modules:

	All standard library modules which make blocking calls such as I/O calls on
file descriptors (including socket [http://docs.python.org/3.4/library/socket.html#module-socket], smtplib [http://docs.python.org/3.4/library/smtplib.html#module-smtplib], etc) are
automatically supported.

	boto [https://github.com/boto/boto]

	Cassandra driver [https://github.com/datastax/python-driver]

	gunicorn [https://github.com/benoitc/gunicorn] (use with -k
guv.GuvWorker)

	pg8000 [https://github.com/mfenniak/pg8000]

	redis-py [https://github.com/andymccurdy/redis-py]

	requests [https://github.com/kennethreitz/requests]

	Many more. This list will be expanded as additional libraries are tested and
confirmed to be compatible

Libraries containing C extensions which are currently supported:

	psycopg2 [https://github.com/psycopg/psycopg2]

Writing support modules for external libraries

The idea behind guv is that everything runs in one OS thread (even
monkey-patched threading.Thread [http://docs.python.org/3.4/library/threading.html#threading.Thread] objects!). Within this single thread,
greenlets are used to switch between various functions efficiently. This means
that any code making blocking calls will block the entire thread and prevent any
other greenlet from running. For this reason, guv provides a monkey-patched
standard library where all functions that can potentially block are replaced
with their “greenified” counterparts that yield instead of blocking. The goal
is to ensure that 100% of the standard library is greenified. If you encounter
any part of the standard library that seems to be blocking instead of yielding,
please file a bug report so this can be resolved as soon as possible.

The issue arises when using modules which make calls to compiled code that
cannot be monkey-patched (for example, through C extensions or CFFI). This is
the case for many popular database drivers or other network code which aim for
maximum performance.

Some libraries provide mechanisms for the purpose of facilitating creating
support modules for libraries such as guv. An excellent example is the high
quality psycopg2 database driver for PostgreSQL, written as a C extension.
This library provides a very clean mechanism to call a callback before making
any operations which could potentially block. This allows guv to
trampoline() and register the connection’s file
descriptor if the I/O operation would block.

See the psycopg2 patcher [https://github.com/veegee/guv/blob/develop/guv/support/psycopg2_patcher.py] for the implementation.

However, many libraries do not provide such a mechanism to simplify creating a
support module. In such case, there are several strategies for making these
libraries cooperative. In all cases, the end goal is the same: call
trampoline(), which cooperatively yields and waits for
the file descriptor to be ready for I/O.

Note: this section is incomplete.

 Copyright 2014, V G.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	guv 0.35.2 documentation

Module Reference

	guv.const - constants

	guv.event - event primitive for greenthreads

	guv.greenpool - greenthread pools

	guv.greenthread - cooperative threads

	guv.patcher - monkey-patching the standard library

	guv.queue - greenthread-compatible queue

	guv.semaphore - greenthread-compatible semaphore

	guv.hubs.switch - facilities for cooperative yielding

	guv.timeout - universal timeouts

	guv.websocket - websocket server

	guv.wsgi - WSGI server

 Copyright 2014, V G.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	guv 0.35.2 documentation

 	Module Reference

guv.const - constants

Event Types

	
guv.const.READ = 1

	This is equivalent to UV_READABLE

	
guv.const.WRITE = 2

	This is equivalent to UV_WRITABLE

 Copyright 2014, V G.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	guv 0.35.2 documentation

 	Module Reference

guv.event - event primitive for greenthreads

	
class guv.event.Event[source]

	Bases: object [http://docs.python.org/3.4/library/functions.html#object]

An abstraction where an arbitrary number of greenlets can wait for one event from another

Events are similar to a Queue that can only hold one item, but differ
in two important ways:

	Calling send() never unschedules the current GreenThread

	send() can only be called once; create a new event to send again.

They are good for communicating results between greenlets, and are the basis for how
GreenThread.wait() is implemented.

>>> from guv import event
>>> import guv
>>> evt = event.Event()
>>> def baz(b):
... evt.send(b + 1)
...
>>> _ = guv.spawn_n(baz, 3)
>>> evt.wait()
4

	
ready() None[source]

	Return true if the wait() call will return immediately

Used to avoid waiting for things that might take a while to time out. For example, you can
put a bunch of events into a list, and then visit them all repeatedly, calling ready()
until one returns True, and then you can wait() on that one

	
send(result=None, exc=None) None[source]

	Make arrangements for the waiters to be woken with the result and then return immediately
to the parent

>>> from guv import event
>>> import guv
>>> evt = event.Event()
>>> def waiter():
... print('about to wait')
... result = evt.wait()
... print('waited for {0}'.format(result))
>>> _ = guv.spawn(waiter)
>>> guv.sleep(0)
about to wait
>>> evt.send('a')
>>> guv.sleep(0)
waited for a

It is an error to call send() multiple times on the same event.

>>> evt.send('whoops')
Traceback (most recent call last):
...
AssertionError: Trying to re-send() an already-triggered event.

Use reset() between send() s to reuse an event object.

	
send_exception(*args) None[source]

	Same as send(), but sends an exception to waiters.

The arguments to send_exception are the same as the arguments
to raise. If a single exception object is passed in, it
will be re-raised when wait() is called, generating a
new stacktrace.

>>> from guv import event
>>> evt = event.Event()
>>> evt.send_exception(RuntimeError())
>>> evt.wait()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "guv/event.py", line 120, in wait
 current.throw(*self._exc)
RuntimeError

If it’s important to preserve the entire original stack trace,
you must pass in the entire sys.exc_info() [http://docs.python.org/3.4/library/sys.html#sys.exc_info] tuple.

>>> import sys
>>> evt = event.Event()
>>> try:
... raise RuntimeError()
... except RuntimeError:
... evt.send_exception(*sys.exc_info())
...
>>> evt.wait()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "guv/event.py", line 120, in wait
 current.throw(*self._exc)
 File "<stdin>", line 2, in <module>
RuntimeError

Note that doing so stores a traceback object directly on the
Event object, which may cause reference cycles. See the
sys.exc_info() [http://docs.python.org/3.4/library/sys.html#sys.exc_info] documentation.

	
wait() None[source]

	Wait until another greenthread calls send()

Returns the value the other coroutine passed to send().

Returns immediately if the event has already occurred.

>>> from guv import event
>>> import guv
>>> evt = event.Event()
>>> def wait_on():
... retval = evt.wait()
... print("waited for {0}".format(retval))
>>> _ = guv.spawn(wait_on)
>>> evt.send('result')
>>> guv.sleep(0)
waited for result

>>> evt.wait()
'result'

	
class guv.event.TEvent[source]

	Bases: object [http://docs.python.org/3.4/library/functions.html#object]

A synchronization primitive that allows one greenlet to wake up one or more others. It has
the same interface as threading.Event [http://docs.python.org/3.4/library/threading.html#threading.Event] but works across greenlets.

An event object manages an internal flag that can be set to true with the set() method and
reset to false with the clear() method. The wait() method blocks until the flag is
true.

	
clear() None[source]

	Reset the internal flag to false.
Subsequently, threads calling wait()
will block until set() is called to set the internal flag to true again.

	
isSet() None

	Return true if and only if the internal flag is true.

	
is_set() None[source]

	Return true if and only if the internal flag is true.

	
rawlink(callback) None[source]

	Register a callback to call when the internal flag is set to true

callback will be called in the Hub, so it must not use blocking
gevent API. callback will be passed one argument: this instance.

	
ready() None

	Return true if and only if the internal flag is true.

	
set() None[source]

	Set the internal flag to true. All greenlets waiting for it to become true are awakened.
Greenlets that call wait() once the flag is true will not block at all.

	
unlink(callback) None[source]

	Remove the callback set by rawlink()

	
wait(timeout=None) None[source]

	Block until the internal flag is true.
If the internal flag is true on entry, return immediately. Otherwise,
block until another thread calls set() to set the flag to true,
or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof).

Return the value of the internal flag (True or False).

	
class guv.event.AsyncResult[source]

	Bases: object [http://docs.python.org/3.4/library/functions.html#object]

A one-time event that stores a value or an exception

Like Event it wakes up all the waiters when set() or set_exception() method
is called. Waiters may receive the passed value or exception by calling get() method
instead of wait(). An AsyncResult instance cannot be reset.

To pass a value call set(). Calls to get() (those that currently blocking as well as
those made in the future) will return the value:

>>> result = AsyncResult()
>>> result.set(100)
>>> result.get()
100

To pass an exception call set_exception(). This will cause get() to raise that
exception:

>>> result = AsyncResult()
>>> result.set_exception(RuntimeError('failure'))
>>> result.get()
Traceback (most recent call last):
 ...
RuntimeError: failure

AsyncResult implements __call__() and thus can be used as link() target:

>>> import gevent
>>> result = AsyncResult()
>>> gevent.spawn(lambda : 1/0).link(result)
>>> try:
... result.get()
... except ZeroDivisionError:
... print 'ZeroDivisionError'
ZeroDivisionError

	
exception

	@property

Holds the exception instance passed to set_exception() if set_exception()
was called.
Otherwise None.

	
get(block=True, timeout=None) None[source]

	Return the stored value or raise the exception.

If this instance already holds a value / an exception, return / raise it immediatelly.
Otherwise, block until another greenlet calls set() or set_exception() or
until the optional timeout occurs.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof).

	
get_nowait() None[source]

	Return the value or raise the exception without blocking.

If nothing is available, raise gevent.Timeout immediatelly.

	
rawlink(callback) None[source]

	Register a callback to call when a value or an exception is set.

callback will be called in the Hub, so it must not use
blocking gevent API.
callback will be passed one argument: this instance.

	
ready() None[source]

	Return true if and only if it holds a value or an exception

	
set(value=None) None[source]

	Store the value. Wake up the waiters.

All greenlets blocking on get() or wait() are woken up.
Sequential calls to wait() and get() will not block at all.

	
set_exception(exception) None[source]

	Store the exception. Wake up the waiters.

All greenlets blocking on get() or wait() are woken up.
Sequential calls to wait() and get() will not block at all.

	
successful() None[source]

	Return true if and only if it is ready and holds a value

	
unlink(callback) None[source]

	Remove the callback set by rawlink()

	
wait(timeout=None) None[source]

	Block until the instance is ready.

If this instance already holds a value / an exception, return immediatelly.
Otherwise, block until another thread calls set() or set_exception() or
until the optional timeout occurs.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof).

Return value.

 Copyright 2014, V G.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	guv 0.35.2 documentation

 	Module Reference

guv.greenpool - greenthread pools

	
class guv.greenpool.GreenPool(size=1000)[source]

	Bases: object [http://docs.python.org/3.4/library/functions.html#object]

Pool of greenlets/GreenThreads

This class manages a pool of greenlets/GreenThreads

	
__init__(size=1000)[source]

	

	Parameters:	size – maximum number of active greenlets

	
free() None[source]

	Return the number of greenthreads available for use

If zero or less, the next call to spawn() or spawn_n() will block the calling
greenthread until a slot becomes available.

	
resize(new_size) None[source]

	Change the max number of greenthreads doing work at any given time

If resize is called when there are more than new_size greenthreads already working on
tasks, they will be allowed to complete but no new tasks will be allowed to get launched
until enough greenthreads finish their tasks to drop the overall quantity below new_size.
Until then, the return value of free() will be negative.

	
running() None[source]

	Return the number of greenthreads that are currently executing functions in the GreenPool

	
spawn(function, *args, **kwargs) None[source]

	Run the function with its arguments in its own green thread

Returns the GreenThread object that is running
the function, which can be used to retrieve the results.

If the pool is currently at capacity, spawn will block until one of the running
greenthreads completes its task and frees up a slot.

This function is reentrant; function can call spawn on the same pool without risk of
deadlocking the whole thing.

	
spawn_n(function, *args, **kwargs) None[source]

	Create a greenthread to run the function like spawn(), but return None

The difference is that spawn_n() returns None; the results of function are not
retrievable.

	
starmap(function, iterable) None[source]

	Apply each item in iterable to function

Each item in iterable must be an iterable itself, passed to the function as expanded
positional arguments. This behaves the same way as itertools.starmap() [http://docs.python.org/3.4/library/itertools.html#itertools.starmap], except that
func is executed in a separate green thread for each item, with the concurrency limited by
the pool’s size. In operation, starmap consumes a constant amount of memory, proportional to
the size of the pool, and is thus suited for iterating over extremely long input lists.

	
waitall() None[source]

	Wait until all greenthreads in the pool are finished working

	
waiting() None[source]

	Return the number of greenthreads waiting to spawn.

	
class guv.greenpool.GreenPile(size_or_pool=1000)[source]

	Bases: object [http://docs.python.org/3.4/library/functions.html#object]

An abstraction representing a set of I/O-related tasks

Construct a GreenPile with an existing GreenPool object. The GreenPile will then use that
pool’s concurrency as it processes its jobs. There can be many GreenPiles associated with a
single GreenPool.

A GreenPile can also be constructed standalone, not associated with any GreenPool. To do this,
construct it with an integer size parameter instead of a GreenPool.

It is not advisable to iterate over a GreenPile in a different greenlet than the one which is
calling spawn. The iterator will exit early in that situation.

	
__init__(size_or_pool=1000)[source]

	

	Parameters:	size_or_pool (int or GreenPool) – either an existing GreenPool object, or the size a new one to create

	
next() None[source]

	Wait for the next result, suspending the current GreenThread until it is available

	Raises StopIteration [http://docs.python.org/3.4/library/exceptions.html#StopIteration]:

		when there are no more results.

	
spawn(func, *args, **kwargs) None[source]

	Run func in its own GreenThread

The Result is available by iterating over the GreenPile object.

	Parameters:	
	func (Callable) – function to call

	args – positional args to pass to func

	kwargs – keyword args to pass to func

 Copyright 2014, V G.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	guv 0.35.2 documentation

 	Module Reference

guv.greenthread - cooperative threads

	
class guv.greenthread.GreenThread(parent)[source]

	Bases: greenlet.greenlet

The GreenThread class is a type of Greenlet which has the additional property of being able
to retrieve the return value of the main function. Do not construct GreenThread objects
directly; call spawn() to get one.

	
__init__(parent)[source]

	

	Parameters:	parent (greenlet.greenlet) – parent greenlet

	
cancel(*throw_args) None[source]

	Kill the GreenThread using kill(), but only if it hasn’t already started running

After being canceled, all calls to wait() will raise throw_args (which default to
greenlet.GreenletExit).

	
kill(*throw_args) None[source]

	Kill the GreenThread using kill()

After being killed all calls to wait() will raise throw_args (which default to
greenlet.GreenletExit).

	
link(func, *curried_args, **curried_kwargs) None[source]

	Set up a function to be called with the results of the GreenThread

The function must have the following signature:

func(gt, [curried args/kwargs])

When the GreenThread finishes its run, it calls func with itself and with the curried
arguments [http://en.wikipedia.org/wiki/Currying] supplied at link-time. If the function
wants to retrieve the result of the GreenThread, it should call wait() on its first
argument.

Note that func is called within execution context of the GreenThread, so it is possible to
interfere with other linked functions by doing things like switching explicitly to another
GreenThread.

	
unlink(func, *curried_args, **curried_kwargs) None[source]

	Remove linked function set by link()

Remove successfully return True, otherwise False

	
wait() None[source]

	Return the result of the main function of this GreenThread

If the result is a normal return value, wait() returns it. If it raised an exception,
wait() will raise the same exception (though the stack trace will unavoidably contain
some frames from within the GreenThread module).

	
guv.greenthread.sleep(seconds=0)[source]

	Yield control to the hub until at least seconds have elapsed

	Parameters:	seconds (float [http://docs.python.org/3.4/library/functions.html#float]) – time to sleep for

	
guv.greenthread.spawn(func, *args, **kwargs)[source]

	Spawn a GreenThread

Execution control returns immediately to the caller; the created GreenThread is scheduled to
be run at the start of the next event loop iteration, after other scheduled greenlets,
but before greenlets waiting for I/O events.

	Returns:	GreenThread object which can be used to retrieve the return value of the function

	Return type:	GreenThread

	
guv.greenthread.spawn_n(func, *args, **kwargs)[source]

	Spawn a greenlet

Execution control returns immediately to the caller; the created greenlet is scheduled to be run
at the start of the next event loop iteration, after other scheduled greenlets, but before
greenlets waiting for I/O events.

This is faster than spawn(), but it is not possible to retrieve the return value of
the greenlet, or whether it raised any exceptions. It is fastest if there are no keyword
arguments.

If an exception is raised in the function, a stack trace is printed; the print can be
disabled by calling guv.debug.hub_exceptions() with False.

	Returns:	greenlet object

	Return type:	greenlet.greenlet

	
guv.greenthread.kill(g, *throw_args)[source]

	Terminate the target greenlet/GreenThread by raising an exception into it

Whatever that GreenThread might be doing, be it waiting for I/O or another primitive, it sees an
exception right away.

By default, this exception is GreenletExit, but a specific exception may be specified.
throw_args should be the same as the arguments to raise; either an exception instance or an
exc_info tuple.

Calling kill() causes the calling greenlet to cooperatively yield.

	Parameters:	g (greenlet.greenlet or GreenThread) – target greenlet/GreenThread to kill

	
guv.greenthread.spawn_after(seconds, func, *args, **kwargs)[source]

	Spawn a GreenThread after seconds have elapsed

Execution control returns immediately to the caller.

To cancel the spawn and prevent func from being called, call GreenThread.cancel() on the
returned GreenThread. This will not abort the function if it’s already started running, which is
generally the desired behavior. If terminating func regardless of whether it’s started or not
is the desired behavior, call GreenThread.kill().

	Returns:	GreenThread object which can be used to retrieve the return value of the function

	Return type:	GreenThread

 Copyright 2014, V G.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	guv 0.35.2 documentation

 	Module Reference

guv.patcher - monkey-patching the standard library

	
guv.patcher.monkey_patch(**modules)[source]

	Globally patch/configure system modules to to be greenlet-friendly

If no keyword arguments are specified, all possible modules are patched. If keyword arguments
are specified, the specified modules (and their dependencies) will be patched.

	Patching socket [http://docs.python.org/3.4/library/socket.html#module-socket] will also patch ssl [http://docs.python.org/3.4/library/ssl.html#module-ssl]

	Patching threading [http://docs.python.org/3.4/library/threading.html#module-threading] will also patch _thread [http://docs.python.org/3.4/library/_thread.html#module-_thread] and queue [http://docs.python.org/3.4/library/queue.html#module-queue]

It’s safe to call monkey_patch multiple times.

Example:

monkey_patch(time=True, socket=True, select=True)

	Parameters:	
	time (bool [http://docs.python.org/3.4/library/functions.html#bool]) – time module: patches sleep()

	os (bool [http://docs.python.org/3.4/library/functions.html#bool]) – os module: patches open(), read(), write(), wait(), waitpid()

	socket (bool [http://docs.python.org/3.4/library/functions.html#bool]) – socket module: patches socket, create_connection()

	select (bool [http://docs.python.org/3.4/library/functions.html#bool]) – select module: patches select()

	threading (bool [http://docs.python.org/3.4/library/functions.html#bool]) – threading module: patches local, Lock(), stack_size(), current_thread()

	psycopg2 (bool [http://docs.python.org/3.4/library/functions.html#bool]) – psycopg2 module: register a wait callback to yield

	cassandra (bool [http://docs.python.org/3.4/library/functions.html#bool]) – cassandra module: set connection class to GuvConnection

	
guv.patcher.original(modname)[source]

	Return an unpatched version of a module

This is useful for guv itself.

	Parameters:	modname (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – name of module

	
guv.patcher.is_monkey_patched(module)[source]

	Check if the specified module is currently patched

Based entirely off the name of the module, so if you import a module some other way than with
the import keyword (including import_patched), this might not be correct about that particular
module

	Parameters:	module (module or str) – module to check (moduble object itself, or its name str)

	Returns:	True if the module is patched else False

	Return type:	bool [http://docs.python.org/3.4/library/functions.html#bool]

	
guv.patcher.inject(module_name, new_globals, *additional_modules)[source]

	Inject greenified modules into an imported module

This method imports the module specified in module_name, arranging things so that the
already-imported modules in additional_modules are used when module_name makes its imports.

new_globals is either None or a globals dictionary that gets populated with the contents of
the module_name module. This is useful when creating a “green” version of some other module.

additional_modules should be a collection of two-element tuples, of the form
(name: str, module: str). If it’s not specified, a default selection of name/module pairs
is used, which should cover all use cases but may be slower because there are inevitably
redundant or unnecessary imports.

	
guv.patcher.import_patched(module_name, *additional_modules, **kw_additional_modules)[source]

	Import patched version of module

	Parameters:	module_name (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – name of module to import

	
guv.patcher.patch_function(func, *additional_modules)[source]

	Decorator that returns a version of the function that patches some modules for the
duration of the function call

This should only be used for functions that import network libraries within their function
bodies that there is no way of getting around.

 Copyright 2014, V G.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	guv 0.35.2 documentation

 	Module Reference

guv.queue - greenthread-compatible queue

Synchronized queues

This module implements multi-producer, multi-consumer queues that work across greenlets, with the
API similar to the classes found in the standard queue [http://docs.python.org/3.4/library/queue.html#module-queue] and multiprocessing [http://docs.python.org/3.4/library/multiprocessing.html#multiprocessing.Queue] modules.

A major difference is that queues in this module operate as channels when initialized with maxsize
of zero. In such case, both empty() [http://docs.python.org/3.4/library/queue.html#queue.Queue.empty] and full() [http://docs.python.org/3.4/library/queue.html#queue.Queue.full] return
True and put() [http://docs.python.org/3.4/library/queue.html#queue.Queue.put] always blocks until a call to get() [http://docs.python.org/3.4/library/queue.html#queue.Queue.get]
retrieves the item.

An interesting difference, made possible because of GreenThreads, is that
qsize() [http://docs.python.org/3.4/library/queue.html#queue.Queue.qsize], empty() [http://docs.python.org/3.4/library/queue.html#queue.Queue.empty], and full() [http://docs.python.org/3.4/library/queue.html#queue.Queue.full] can be used
as indicators of whether the subsequent get() [http://docs.python.org/3.4/library/queue.html#queue.Queue.get] or put() [http://docs.python.org/3.4/library/queue.html#queue.Queue.put] will
not block. The new methods LightQueue.getting() and LightQueue.putting() report on
the number of GreenThreads blocking in put() [http://docs.python.org/3.4/library/queue.html#queue.Queue.put] or get() [http://docs.python.org/3.4/library/queue.html#queue.Queue.get]
respectively.

	
exception guv.queue.Full[source]

	Bases: Exception [http://docs.python.org/3.4/library/exceptions.html#Exception]

Exception raised by Queue.put(block=0)/put_nowait().

	
exception guv.queue.Empty[source]

	Bases: Exception [http://docs.python.org/3.4/library/exceptions.html#Exception]

Exception raised by Queue.get(block=0)/get_nowait().

	
class guv.queue.Queue(maxsize=None)[source]

	Bases: guv.queue.LightQueue

Create a queue object with a given maximum size

If maxsize is less than zero or None, the queue size is infinite.

Queue(0) is a channel, that is, its put() method always blocks until the item is
delivered. (This is unlike the standard queue.Queue [http://docs.python.org/3.4/library/queue.html#queue.Queue], where 0 means infinite size).

In all other respects, this Queue class resembles the standard library, queue.Queue [http://docs.python.org/3.4/library/queue.html#queue.Queue].

	
join() None[source]

	Block until all items in the queue have been gotten and processed

The count of unfinished tasks goes up whenever an item is added to the queue.
The count goes down whenever a consumer thread calls task_done() to indicate
that the item was retrieved and all work on it is complete. When the count of
unfinished tasks drops to zero, join() unblocks.

	
task_done() None[source]

	Indicate that a formerly enqueued task is complete. Used by queue consumer threads.
For each get used to fetch a task, a subsequent call to
task_done() tells the queue
that the processing on the task is complete.

If a join() is currently blocking, it will resume when all items have been processed
(meaning that a task_done() call was received for every item that had been
put into the queue).

Raises a ValueError [http://docs.python.org/3.4/library/exceptions.html#ValueError] if called more times than there were items placed in the queue.

	
class guv.queue.PriorityQueue(maxsize=None)[source]

	Bases: guv.queue.Queue

A subclass of Queue that retrieves entries in priority order (lowest first)

Entries are typically tuples of the form: (priority number, data).

	
class guv.queue.LifoQueue(maxsize=None)[source]

	Bases: guv.queue.Queue

A subclass of Queue that retrieves most recently added entries first

	
class guv.queue.LightQueue(maxsize=None)[source]

	Bases: object [http://docs.python.org/3.4/library/functions.html#object]

This is a variant of Queue that behaves mostly like the standard Queue. It differs by
not supporting the task_done() [http://docs.python.org/3.4/library/queue.html#queue.Queue.task_done] or join() [http://docs.python.org/3.4/library/queue.html#queue.Queue.join] methods, and is a
little faster for not having that overhead.

	
empty() None[source]

	Return True if the queue is empty, False otherwise.

	
full() None[source]

	Return True if the queue is full, False otherwise.

Queue(None) is never full.

	
get(block=True, timeout=None) None[source]

	Remove and return an item from the queue.

If optional args block is true and timeout is None (the default),
block if necessary until an item is available. If timeout is a positive number,
it blocks at most timeout seconds and raises the queue.Empty [http://docs.python.org/3.4/library/queue.html#queue.Empty] exception
if no item was available within that time. Otherwise (block is false), return
an item if one is immediately available, else raise the queue.Empty [http://docs.python.org/3.4/library/queue.html#queue.Empty] exception
(timeout is ignored in that case).

	
get_nowait() None[source]

	Remove and return an item from the queue without blocking.

Only get an item if one is immediately available. Otherwise
raise the queue.Empty [http://docs.python.org/3.4/library/queue.html#queue.Empty] exception.

	
getting() None[source]

	Returns the number of GreenThreads that are blocked waiting on an
empty queue.

	
put(item, block=True, timeout=None) None[source]

	Put an item into the queue.

If optional arg block is true and timeout is None (the default),
block if necessary until a free slot is available. If timeout is
a positive number, it blocks at most timeout seconds and raises
the queue.Full [http://docs.python.org/3.4/library/queue.html#queue.Full] exception if no free slot was available within that time.
Otherwise (block is false), put an item on the queue if a free slot
is immediately available, else raise the queue.Full [http://docs.python.org/3.4/library/queue.html#queue.Full] exception (timeout
is ignored in that case).

	
put_nowait(item) None[source]

	Put an item into the queue without blocking.

Only enqueue the item if a free slot is immediately available.
Otherwise raise the queue.Full [http://docs.python.org/3.4/library/queue.html#queue.Full] exception.

	
putting() None[source]

	Returns the number of GreenThreads that are blocked waiting to put
items into the queue.

	
qsize() None[source]

	Return the size of the queue.

	
resize(size) None[source]

	Resizes the queue’s maximum size.

If the size is increased, and there are putters waiting, they may be woken up.

 Copyright 2014, V G.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	guv 0.35.2 documentation

 	Module Reference

guv.semaphore - greenthread-compatible semaphore

	
class guv.semaphore.BoundedSemaphore(value=1)[source]

	Bases: guv.semaphore.Semaphore

A bounded semaphore checks to make sure its current value doesn’t exceed
its initial value. If it does, ValueError is raised. In most situations
semaphores are used to guard resources with limited capacity. If the
semaphore is released too many times it’s a sign of a bug. If not given,
value defaults to 1.

	
release(blocking=True) None[source]

	Release a semaphore, incrementing the internal counter by one. If
the counter would exceed the initial value, raises ValueError. When
it was zero on entry and another thread is waiting for it to become
larger than zero again, wake up that thread.

The blocking argument is for consistency with CappedSemaphore
and is ignored

	
class guv.semaphore.CappedSemaphore(count, limit)[source]

	Bases: object [http://docs.python.org/3.4/library/functions.html#object]

A blockingly bounded semaphore.

Optionally initialize with a resource count, then acquire() and
release() resources as needed. Attempting to acquire() when
count is zero suspends the calling greenthread until count becomes nonzero
again. Attempting to release() after count has reached limit
suspends the calling greenthread until count becomes less than limit
again.

This has the same API as threading.Semaphore [http://docs.python.org/3.4/library/threading.html#threading.Semaphore], though its
semantics and behavior differ subtly due to the upper limit on calls
to release(). It is not compatible with
threading.BoundedSemaphore [http://docs.python.org/3.4/library/threading.html#threading.BoundedSemaphore] because it blocks when reaching limit
instead of raising a ValueError.

It is a context manager, and thus can be used in a with block:

sem = CappedSemaphore(2)
with sem:
 do_some_stuff()

	
balance

	@property

An integer value that represents how many new calls to
acquire() or release() would be needed to get the counter to
0. If it is positive, then its value is the number of acquires that can
happen before the next acquire would block. If it is negative, it is
the negative of the number of releases that would be required in order
to make the counter 0 again (one more release would push the counter to
1 and unblock acquirers). It takes into account how many greenthreads
are currently blocking in acquire() and release().

	
acquire(blocking=True) None[source]

	Acquire a semaphore.

When invoked without arguments: if the internal counter is larger than
zero on entry, decrement it by one and return immediately. If it is zero
on entry, block, waiting until some other thread has called release() to
make it larger than zero. This is done with proper interlocking so that
if multiple acquire() calls are blocked, release() will wake exactly one
of them up. The implementation may pick one at random, so the order in
which blocked threads are awakened should not be relied on. There is no
return value in this case.

When invoked with blocking set to true, do the same thing as when called
without arguments, and return true.

When invoked with blocking set to false, do not block. If a call without
an argument would block, return false immediately; otherwise, do the
same thing as when called without arguments, and return true.

	
bounded() None[source]

	Returns true if a call to release would block.

	
locked() None[source]

	Returns true if a call to acquire would block.

	
release(blocking=True) None[source]

	Release a semaphore. In this class, this behaves very much like
an acquire() but in the opposite direction.

Imagine the docs of acquire() here, but with every direction
reversed. When calling this method, it will block if the internal
counter is greater than or equal to limit.

	
class guv.semaphore.Semaphore(value=1)[source]

	Bases: object [http://docs.python.org/3.4/library/functions.html#object]

An unbounded semaphore

Optionally initialize with a resource count, then acquire() and release()
resources as needed. Attempting to acquire() when count* is zero suspends the calling
greenthread until count becomes nonzero again.

This is API-compatible with threading.Semaphore [http://docs.python.org/3.4/library/threading.html#threading.Semaphore].

It is a context manager, and thus can be used in a with block:

sem = Semaphore(2)
with sem:
 do_some_stuff()

If not specified, value defaults to 1.

It is possible to limit acquire time:

sem = Semaphore()
ok = sem.acquire(timeout=0.1)
True if acquired, False if timed out.

	
balance

	@property

An integer value that represents how many new calls to
acquire() or release() would be needed to get the counter to
0. If it is positive, then its value is the number of acquires that can
happen before the next acquire would block. If it is negative, it is
the negative of the number of releases that would be required in order
to make the counter 0 again (one more release would push the counter to
1 and unblock acquirers). It takes into account how many greenthreads
are currently blocking in acquire().

	
acquire(blocking=True, timeout=None) None[source]

	Acquire a semaphore

This function behaves like threading.Lock.acquire() [http://docs.python.org/3.4/library/threading.html#threading.Lock.acquire].

When invoked without arguments: if the internal counter is larger than
zero on entry, decrement it by one and return immediately. If it is zero
on entry, block, waiting until some other thread has called release() to
make it larger than zero. This is done with proper interlocking so that
if multiple acquire() calls are blocked, release() will wake exactly one
of them up. The implementation may pick one at random, so the order in
which blocked threads are awakened should not be relied on. There is no
return value in this case.

When invoked with blocking set to true, do the same thing as when called
without arguments, and return true.

When invoked with blocking set to false, do not block. If a call without
an argument would block, return false immediately; otherwise, do the
same thing as when called without arguments, and return true.

	
bounded() None[source]

	Returns False; for consistency with
CappedSemaphore.

	
locked() None[source]

	Returns true if a call to acquire would block.

	
release(blocking=True) None[source]

	Release a semaphore, incrementing the internal counter by one. When
it was zero on entry and another thread is waiting for it to become
larger than zero again, wake up that thread.

The blocking argument is for consistency with CappedSemaphore and is
ignored

 Copyright 2014, V G.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	guv 0.35.2 documentation

 	Module Reference

guv.hubs.switch - facilities for cooperative yielding

	
guv.hubs.switch.gyield(switch_back=True)[source]

	Yield to other greenlets

This is a cooperative yield which suspends the current greenlet and allows other greenlets to
run by switching to the hub.

	If switch_back is True (default), the current greenlet is resumed at the beginning of the
next event loop iteration, before the loop polls for I/O and calls any I/O callbacks. This
is the intended use for this function the vast majority of the time.

	If switch_back is False, the hub will will never resume the current greenlet (use with
caution). This is mainly useful for situations where other greenlets (not the hub) are
responsible for switching back to this greenlet. An example is the Event class,
where waiters are switched to when the event is ready.

	Parameters:	switch_back (bool [http://docs.python.org/3.4/library/functions.html#bool]) – automatically switch back to this greenlet on the next event loop cycle

	
guv.hubs.switch.trampoline(fd, evtype, timeout=None, timeout_exc=<class 'guv.timeout.Timeout'>)[source]

	Jump from the current greenlet to the hub and wait until the given file descriptor is ready
for I/O, or the specified timeout elapses

If the specified timeout elapses before the socket is ready to read or write, timeout_exc
will be raised instead of trampoline() returning normally.

When the specified file descriptor is ready for I/O, the hub internally calls the callback to
switch back to the current (this) greenlet.

Conditions:

	must not be called from the hub greenlet (can be called from any other greenlet)

	evtype must be either READ or WRITE (not possible to
watch for both simultaneously)

	Parameters:	
	fd (int [http://docs.python.org/3.4/library/functions.html#int]) – file descriptor

	evtype (int [http://docs.python.org/3.4/library/functions.html#int]) – either the constant READ or WRITE

	timeout (float [http://docs.python.org/3.4/library/functions.html#float]) – (optional) maximum time to wait in seconds

	timeout_exc (Exception [http://docs.python.org/3.4/library/exceptions.html#Exception]) – (optional) timeout Exception class

 Copyright 2014, V G.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	guv 0.35.2 documentation

 	Module Reference

guv.timeout - universal timeouts

	
exception guv.timeout.Timeout(seconds=None, exception=None)[source]

	Bases: BaseException [http://docs.python.org/3.4/library/exceptions.html#BaseException]

Raise exception in the current greenthread after timeout seconds.

When exception is omitted or None, the Timeout instance itself is raised. If
seconds is None, the timer is not scheduled, and is only useful if you’re planning to raise it
directly.

Timeout objects are context managers, and so can be used in with statements. When used in a with
statement, if exception is False, the timeout is still raised, but the context manager
suppresses it, so the code outside the with-block won’t see it.

	
pending

	@property

True if the timeout is scheduled to be raised

	
__init__(seconds=None, exception=None)[source]

	

	Parameters:	
	seconds (float [http://docs.python.org/3.4/library/functions.html#float]) – timeout seconds

	exception – exception to raise when timeout occurs

	
cancel() None[source]

	If the timeout is pending, cancel it

If not using Timeouts in with statements, always call cancel() in a finally after
the block of code that is getting timed out. If not canceled, the timeout will be raised
later on, in some unexpected section of the application.

	
start() None[source]

	Schedule the timeout. This is called on construction, so
it should not be called explicitly, unless the timer has been
canceled.

	
guv.timeout.with_timeout(seconds, function, *args, **kwds)[source]

	Wrap a call to some (yielding) function with a timeout

If the called function fails to return before the timeout, cancel it and return a flag value.

 Copyright 2014, V G.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	guv 0.35.2 documentation

 	Module Reference

guv.websocket - websocket server

	
class guv.websocket.WebSocketWSGI(handler)[source]

	Bases: object [http://docs.python.org/3.4/library/functions.html#object]

Wraps a websocket handler function in a WSGI application.

Use it like this:

@websocket.WebSocketWSGI
def my_handler(ws):
 from_browser = ws.wait()
 ws.send("from server")

The single argument to the function will be an instance of
WebSocket. To close the socket, simply return from the
function. Note that the server will log the websocket request at
the time of closure.

	
class guv.websocket.WebSocket(sock, environ, version=76)[source]

	Bases: object [http://docs.python.org/3.4/library/functions.html#object]

A websocket object that handles the details of
serialization/deserialization to the socket.

The primary way to interact with a WebSocket object is to
call send() and wait() in order to pass messages back
and forth with the browser. Also available are the following
properties:

	path

	The path value of the request. This is the same as the WSGI PATH_INFO variable,
but more convenient.

	protocol

	The value of the Websocket-Protocol header.

	origin

	The value of the ‘Origin’ header.

	environ

	The full WSGI environment for this request.

	
__init__(sock, environ, version=76)[source]

	

	Parameters:	
	socket (eventlet.greenio.GreenSocket) – The guv socket

	environ – The wsgi environment

	version – The WebSocket spec version to follow (default is 76)

	
close() None[source]

	Forcibly close the websocket; generally it is preferable to
return from the handler method.

	
send(message) None[source]

	Send a message to the browser.

message should be convertable to a string; unicode objects should be
encodable as utf-8. Raises socket.error with errno of 32
(broken pipe) if the socket has already been closed by the client.

	
wait() None[source]

	Waits for and deserializes messages.

Returns a single message; the oldest not yet processed. If the client
has already closed the connection, returns None. This is different
from normal socket behavior because the empty string is a valid
websocket message.

 Copyright 2014, V G.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	guv 0.35.2 documentation

 	Module Reference

guv.wsgi - WSGI server

	
guv.wsgi.serve(server_sock, app, log_output=True)[source]

	Start up a WSGI server handling requests from the supplied server socket

This function loops forever. The sock object will be closed after server exits, but the
underlying file descriptor will remain open, so if you have a dup() of sock, it will remain
usable.

	Parameters:	
	server_sock – server socket, must be already bound to a port and listening

	app – WSGI application callable

	
guv.wsgi.format_date_time(timestamp)[source]

	Format a unix timestamp into an HTTP standard string

 Copyright 2014, V G.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	guv 0.35.2 documentation

 Python Module Index

 g

 			

 		
 g	

 	[image: -]
 	
 guv	

 	
 	
 guv.event	

 	
 	
 guv.greenpool	

 	
 	
 guv.greenthread	

 	
 	
 guv.hubs.switch	

 	
 	
 guv.patcher	

 	
 	
 guv.queue	

 	
 	
 guv.semaphore	

 	
 	
 guv.timeout	

 	
 	
 guv.websocket	

 	
 	
 guv.wsgi	

 Copyright 2014, V G.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	guv 0.35.2 documentation

Index

 _
 | A
 | B
 | C
 | E
 | F
 | G
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

_

 	

 	__init__() (guv.greenpool.GreenPile method)

 	

 	(guv.greenpool.GreenPool method)

 	(guv.greenthread.GreenThread method)

 	(guv.timeout.Timeout method)

 	(guv.websocket.WebSocket method)

A

 	

 	acquire() (guv.semaphore.CappedSemaphore method)

 	

 	(guv.semaphore.Semaphore method)

 	

 	AsyncResult (class in guv.event)

B

 	

 	balance (guv.semaphore.CappedSemaphore attribute)

 	

 	(guv.semaphore.Semaphore attribute)

 	bounded() (guv.semaphore.CappedSemaphore method)

 	

 	(guv.semaphore.Semaphore method)

 	

 	BoundedSemaphore (class in guv.semaphore)

C

 	

 	cancel() (guv.greenthread.GreenThread method)

 	

 	(guv.timeout.Timeout method)

 	CappedSemaphore (class in guv.semaphore)

 	

 	clear() (guv.event.TEvent method)

 	close() (guv.websocket.WebSocket method)

E

 	

 	Empty

 	empty() (guv.queue.LightQueue method)

 	

 	Event (class in guv.event)

 	exception (guv.event.AsyncResult attribute)

F

 	

 	format_date_time() (in module guv.wsgi)

 	free() (guv.greenpool.GreenPool method)

 	

 	Full

 	full() (guv.queue.LightQueue method)

G

 	

 	get() (guv.event.AsyncResult method)

 	

 	(guv.queue.LightQueue method)

 	get_nowait() (guv.event.AsyncResult method)

 	

 	(guv.queue.LightQueue method)

 	getting() (guv.queue.LightQueue method)

 	GreenPile (class in guv.greenpool)

 	GreenPool (class in guv.greenpool)

 	GreenThread (class in guv.greenthread)

 	guv.event (module)

 	guv.greenpool (module)

 	guv.greenthread (module)

 	

 	guv.hubs.switch (module)

 	guv.patcher (module)

 	guv.queue (module)

 	guv.semaphore (module)

 	guv.timeout (module)

 	guv.websocket (module)

 	guv.wsgi (module)

 	gyield() (in module guv.hubs.switch)

I

 	

 	import_patched() (in module guv.patcher)

 	inject() (in module guv.patcher)

 	is_monkey_patched() (in module guv.patcher)

 	

 	is_set() (guv.event.TEvent method)

 	isSet() (guv.event.TEvent method)

J

 	

 	join() (guv.queue.Queue method)

K

 	

 	kill() (guv.greenthread.GreenThread method)

 	

 	(in module guv.greenthread)

L

 	

 	LifoQueue (class in guv.queue)

 	LightQueue (class in guv.queue)

 	

 	link() (guv.greenthread.GreenThread method)

 	locked() (guv.semaphore.CappedSemaphore method)

 	

 	(guv.semaphore.Semaphore method)

M

 	

 	monkey_patch() (in module guv.patcher)

N

 	

 	next() (guv.greenpool.GreenPile method)

O

 	

 	original() (in module guv.patcher)

P

 	

 	patch_function() (in module guv.patcher)

 	pending (guv.timeout.Timeout attribute)

 	PriorityQueue (class in guv.queue)

 	

 	put() (guv.queue.LightQueue method)

 	put_nowait() (guv.queue.LightQueue method)

 	putting() (guv.queue.LightQueue method)

Q

 	

 	qsize() (guv.queue.LightQueue method)

 	

 	Queue (class in guv.queue)

R

 	

 	rawlink() (guv.event.AsyncResult method)

 	

 	(guv.event.TEvent method)

 	READ (in module guv.const)

 	ready() (guv.event.AsyncResult method)

 	

 	(guv.event.Event method)

 	(guv.event.TEvent method)

 	

 	release() (guv.semaphore.BoundedSemaphore method)

 	

 	(guv.semaphore.CappedSemaphore method)

 	(guv.semaphore.Semaphore method)

 	resize() (guv.greenpool.GreenPool method)

 	

 	(guv.queue.LightQueue method)

 	running() (guv.greenpool.GreenPool method)

S

 	

 	Semaphore (class in guv.semaphore)

 	send() (guv.event.Event method)

 	

 	(guv.websocket.WebSocket method)

 	send_exception() (guv.event.Event method)

 	serve() (in module guv.wsgi)

 	set() (guv.event.AsyncResult method)

 	

 	(guv.event.TEvent method)

 	set_exception() (guv.event.AsyncResult method)

 	sleep() (in module guv.greenthread)

 	

 	spawn() (guv.greenpool.GreenPile method)

 	

 	(guv.greenpool.GreenPool method)

 	(in module guv.greenthread)

 	spawn_after() (in module guv.greenthread)

 	spawn_n() (guv.greenpool.GreenPool method)

 	

 	(in module guv.greenthread)

 	starmap() (guv.greenpool.GreenPool method)

 	start() (guv.timeout.Timeout method)

 	successful() (guv.event.AsyncResult method)

T

 	

 	task_done() (guv.queue.Queue method)

 	TEvent (class in guv.event)

 	

 	Timeout

 	trampoline() (in module guv.hubs.switch)

U

 	

 	unlink() (guv.event.AsyncResult method)

 	

 	(guv.event.TEvent method)

 	(guv.greenthread.GreenThread method)

W

 	

 	wait() (guv.event.AsyncResult method)

 	

 	(guv.event.Event method)

 	(guv.event.TEvent method)

 	(guv.greenthread.GreenThread method)

 	(guv.websocket.WebSocket method)

 	waitall() (guv.greenpool.GreenPool method)

 	waiting() (guv.greenpool.GreenPool method)

 	WebSocket (class in guv.websocket)

 	

 	WebSocketWSGI (class in guv.websocket)

 	with_timeout() (in module guv.timeout)

 	WRITE (in module guv.const)

 Copyright 2014, V G.
 Created using Sphinx 1.3.1.

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment-bright.png

_static/down.png

_static/file.png

_static/plus.png

_static/up.png

_modules/queue.html

 Navigation

 		
 index

 		
 modules |

 		guv 0.35.2 documentation »

 		Module code »

 Source code for queue

'''A multi-producer, multi-consumer queue.'''

try:
 import threading
except ImportError:
 import dummy_threading as threading
from collections import deque
from heapq import heappush, heappop
try:
 from time import monotonic as time
except ImportError:
 from time import time

__all__ = ['Empty', 'Full', 'Queue', 'PriorityQueue', 'LifoQueue']

[docs]class Empty(Exception):
 'Exception raised by Queue.get(block=0)/get_nowait().'
 pass

[docs]class Full(Exception):
 'Exception raised by Queue.put(block=0)/put_nowait().'
 pass

class Queue:
 '''Create a queue object with a given maximum size.

 If maxsize is <= 0, the queue size is infinite.
 '''

 def __init__(self, maxsize=0):
 self.maxsize = maxsize
 self._init(maxsize)

 # mutex must be held whenever the queue is mutating. All methods
 # that acquire mutex must release it before returning. mutex
 # is shared between the three conditions, so acquiring and
 # releasing the conditions also acquires and releases mutex.
 self.mutex = threading.Lock()

 # Notify not_empty whenever an item is added to the queue; a
 # thread waiting to get is notified then.
 self.not_empty = threading.Condition(self.mutex)

 # Notify not_full whenever an item is removed from the queue;
 # a thread waiting to put is notified then.
 self.not_full = threading.Condition(self.mutex)

 # Notify all_tasks_done whenever the number of unfinished tasks
 # drops to zero; thread waiting to join() is notified to resume
 self.all_tasks_done = threading.Condition(self.mutex)
 self.unfinished_tasks = 0

 def task_done(self):
 '''Indicate that a formerly enqueued task is complete.

 Used by Queue consumer threads. For each get() used to fetch a task,
 a subsequent call to task_done() tells the queue that the processing
 on the task is complete.

 If a join() is currently blocking, it will resume when all items
 have been processed (meaning that a task_done() call was received
 for every item that had been put() into the queue).

 Raises a ValueError if called more times than there were items
 placed in the queue.
 '''
 with self.all_tasks_done:
 unfinished = self.unfinished_tasks - 1
 if unfinished <= 0:
 if unfinished < 0:
 raise ValueError('task_done() called too many times')
 self.all_tasks_done.notify_all()
 self.unfinished_tasks = unfinished

 def join(self):
 '''Blocks until all items in the Queue have been gotten and processed.

 The count of unfinished tasks goes up whenever an item is added to the
 queue. The count goes down whenever a consumer thread calls task_done()
 to indicate the item was retrieved and all work on it is complete.

 When the count of unfinished tasks drops to zero, join() unblocks.
 '''
 with self.all_tasks_done:
 while self.unfinished_tasks:
 self.all_tasks_done.wait()

 def qsize(self):
 '''Return the approximate size of the queue (not reliable!).'''
 with self.mutex:
 return self._qsize()

 def empty(self):
 '''Return True if the queue is empty, False otherwise (not reliable!).

 This method is likely to be removed at some point. Use qsize() == 0
 as a direct substitute, but be aware that either approach risks a race
 condition where a queue can grow before the result of empty() or
 qsize() can be used.

 To create code that needs to wait for all queued tasks to be
 completed, the preferred technique is to use the join() method.
 '''
 with self.mutex:
 return not self._qsize()

 def full(self):
 '''Return True if the queue is full, False otherwise (not reliable!).

 This method is likely to be removed at some point. Use qsize() >= n
 as a direct substitute, but be aware that either approach risks a race
 condition where a queue can shrink before the result of full() or
 qsize() can be used.
 '''
 with self.mutex:
 return 0 < self.maxsize <= self._qsize()

 def put(self, item, block=True, timeout=None):
 '''Put an item into the queue.

 If optional args 'block' is true and 'timeout' is None (the default),
 block if necessary until a free slot is available. If 'timeout' is
 a non-negative number, it blocks at most 'timeout' seconds and raises
 the Full exception if no free slot was available within that time.
 Otherwise ('block' is false), put an item on the queue if a free slot
 is immediately available, else raise the Full exception ('timeout'
 is ignored in that case).
 '''
 with self.not_full:
 if self.maxsize > 0:
 if not block:
 if self._qsize() >= self.maxsize:
 raise Full
 elif timeout is None:
 while self._qsize() >= self.maxsize:
 self.not_full.wait()
 elif timeout < 0:
 raise ValueError("'timeout' must be a non-negative number")
 else:
 endtime = time() + timeout
 while self._qsize() >= self.maxsize:
 remaining = endtime - time()
 if remaining <= 0.0:
 raise Full
 self.not_full.wait(remaining)
 self._put(item)
 self.unfinished_tasks += 1
 self.not_empty.notify()

 def get(self, block=True, timeout=None):
 '''Remove and return an item from the queue.

 If optional args 'block' is true and 'timeout' is None (the default),
 block if necessary until an item is available. If 'timeout' is
 a non-negative number, it blocks at most 'timeout' seconds and raises
 the Empty exception if no item was available within that time.
 Otherwise ('block' is false), return an item if one is immediately
 available, else raise the Empty exception ('timeout' is ignored
 in that case).
 '''
 with self.not_empty:
 if not block:
 if not self._qsize():
 raise Empty
 elif timeout is None:
 while not self._qsize():
 self.not_empty.wait()
 elif timeout < 0:
 raise ValueError("'timeout' must be a non-negative number")
 else:
 endtime = time() + timeout
 while not self._qsize():
 remaining = endtime - time()
 if remaining <= 0.0:
 raise Empty
 self.not_empty.wait(remaining)
 item = self._get()
 self.not_full.notify()
 return item

 def put_nowait(self, item):
 '''Put an item into the queue without blocking.

 Only enqueue the item if a free slot is immediately available.
 Otherwise raise the Full exception.
 '''
 return self.put(item, block=False)

 def get_nowait(self):
 '''Remove and return an item from the queue without blocking.

 Only get an item if one is immediately available. Otherwise
 raise the Empty exception.
 '''
 return self.get(block=False)

 # Override these methods to implement other queue organizations
 # (e.g. stack or priority queue).
 # These will only be called with appropriate locks held

 # Initialize the queue representation
 def _init(self, maxsize):
 self.queue = deque()

 def _qsize(self):
 return len(self.queue)

 # Put a new item in the queue
 def _put(self, item):
 self.queue.append(item)

 # Get an item from the queue
 def _get(self):
 return self.queue.popleft()

class PriorityQueue(Queue):
 '''Variant of Queue that retrieves open entries in priority order (lowest first).

 Entries are typically tuples of the form: (priority number, data).
 '''

 def _init(self, maxsize):
 self.queue = []

 def _qsize(self):
 return len(self.queue)

 def _put(self, item):
 heappush(self.queue, item)

 def _get(self):
 return heappop(self.queue)

class LifoQueue(Queue):
 '''Variant of Queue that retrieves most recently added entries first.'''

 def _init(self, maxsize):
 self.queue = []

 def _qsize(self):
 return len(self.queue)

 def _put(self, item):
 self.queue.append(item)

 def _get(self):
 return self.queue.pop()

 © Copyright 2014, V G.
 Created using Sphinx 1.3.1.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		guv 0.35.2 documentation »

 All modules for which code is available

		guv.event

		guv.greenpool

		guv.greenthread

		guv.hubs.switch

		guv.patcher

		guv.queue

		guv.semaphore

		guv.timeout

		guv.websocket

		guv.wsgi

		queue

 © Copyright 2014, V G.
 Created using Sphinx 1.3.1.

_static/down-pressed.png

_modules/guv/event.html

 Navigation

 		
 index

 		
 modules |

 		guv 0.35.2 documentation »

 		Module code »

 Source code for guv.event

import greenlet
import sys
from collections import deque

from . import hubs
from .timeout import Timeout
from .hubs import get_hub
from .hubs.switch import gyield

__all__ = ['Event', 'TEvent', 'AsyncResult']

class _NONE:
 __slots__ = []

 def __repr__(self):
 return '<_NONE>'

_NONE = _NONE()

[docs]class Event:
 """An abstraction where an arbitrary number of greenlets can wait for one event from another

 Events are similar to a Queue that can only hold one item, but differ
 in two important ways:

 1. Calling :meth:`send` never unschedules the current GreenThread
 2. :meth:`send` can only be called once; create a new event to send again.

 They are good for communicating results between greenlets, and are the basis for how
 :meth:`GreenThread.wait() <guv.GreenThread.GreenThread.wait>` is implemented.

 >>> from guv import event
 >>> import guv
 >>> evt = event.Event()
 >>> def baz(b):
 ... evt.send(b + 1)
 ...
 >>> _ = guv.spawn_n(baz, 3)
 >>> evt.wait()
 4
 """
 _result = None
 _exc = None

 def __init__(self):
 self._waiters = set()
 self.reset()

 def __str__(self):
 params = (self.__class__.__name__, hex(id(self)),
 self._result, self._exc, len(self._waiters))
 return '<%s at %s result=%r _exc=%r _waiters[%d]>' % params

 def reset(self):
 # this is kind of a misfeature and doesn't work perfectly well,
 # it's better to create a new event rather than reset an old one
 # removing documentation so that we don't get new use cases for it
 assert self._result is not _NONE, 'Trying to re-reset() a fresh event.'
 self._result = _NONE
 self._exc = None

[docs] def ready(self):
 """Return true if the :meth:`wait` call will return immediately

 Used to avoid waiting for things that might take a while to time out. For example, you can
 put a bunch of events into a list, and then visit them all repeatedly, calling :meth:`ready`
 until one returns ``True``, and then you can :meth:`wait` on that one
 """
 return self._result is not _NONE

 def has_exception(self):
 return self._exc is not None

 def has_result(self):
 return self._result is not _NONE and self._exc is None

 def poll(self, notready=None):
 if self.ready():
 return self.wait()
 return notready

 # QQQ make it return tuple (type, value, tb) instead of raising
 # because
 # 1) "poll" does not imply raising
 # 2) it's better not to screw up caller's sys.exc_info() by default
 # (e.g. if caller wants to calls the function in except or finally)
 def poll_exception(self, notready=None):
 if self.has_exception():
 return self.wait()
 return notready

 def poll_result(self, notready=None):
 if self.has_result():
 return self.wait()
 return notready

[docs] def wait(self):
 """Wait until another greenthread calls :meth:`send`

 Returns the value the other coroutine passed to :meth:`send`.

 Returns immediately if the event has already occurred.

 >>> from guv import event
 >>> import guv
 >>> evt = event.Event()
 >>> def wait_on():
 ... retval = evt.wait()
 ... print("waited for {0}".format(retval))
 >>> _ = guv.spawn(wait_on)
 >>> evt.send('result')
 >>> guv.sleep(0)
 waited for result

 >>> evt.wait()
 'result'
 """
 current = greenlet.getcurrent()
 if self._result is _NONE:
 self._waiters.add(current)
 try:
 gyield(False)
 finally:
 self._waiters.discard(current)
 if self._exc is not None:
 current.throw(*self._exc)
 return self._result

[docs] def send(self, result=None, exc=None):
 """Make arrangements for the waiters to be woken with the result and then return immediately
 to the parent

 >>> from guv import event
 >>> import guv
 >>> evt = event.Event()
 >>> def waiter():
 ... print('about to wait')
 ... result = evt.wait()
 ... print('waited for {0}'.format(result))
 >>> _ = guv.spawn(waiter)
 >>> guv.sleep(0)
 about to wait
 >>> evt.send('a')
 >>> guv.sleep(0)
 waited for a

 It is an error to call :meth:`send` multiple times on the same event.

 >>> evt.send('whoops')
 Traceback (most recent call last):
 ...
 AssertionError: Trying to re-send() an already-triggered event.

 Use :meth:`reset` between :meth:`send` s to reuse an event object.
 """
 assert self._result is _NONE, 'Trying to re-send() an already-triggered event.'
 self._result = result
 if exc is not None and not isinstance(exc, tuple):
 exc = (exc,)
 self._exc = exc
 hub = hubs.get_hub()
 for waiter in self._waiters:
 hub.schedule_call_global(
 0, self._do_send, self._result, self._exc, waiter)

 def _do_send(self, result, exc, waiter):
 if waiter in self._waiters:
 if exc is None:
 waiter.switch(result)
 else:
 waiter.throw(*exc)

[docs] def send_exception(self, *args):
 """Same as :meth:`send`, but sends an exception to waiters.

 The arguments to send_exception are the same as the arguments
 to ``raise``. If a single exception object is passed in, it
 will be re-raised when :meth:`wait` is called, generating a
 new stacktrace.

 >>> from guv import event
 >>> evt = event.Event()
 >>> evt.send_exception(RuntimeError())
 >>> evt.wait()
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "guv/event.py", line 120, in wait
 current.throw(*self._exc)
 RuntimeError

 If it's important to preserve the entire original stack trace,
 you must pass in the entire :func:`sys.exc_info` tuple.

 >>> import sys
 >>> evt = event.Event()
 >>> try:
 ... raise RuntimeError()
 ... except RuntimeError:
 ... evt.send_exception(*sys.exc_info())
 ...
 >>> evt.wait()
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "guv/event.py", line 120, in wait
 current.throw(*self._exc)
 File "<stdin>", line 2, in <module>
 RuntimeError

 Note that doing so stores a traceback object directly on the
 Event object, which may cause reference cycles. See the
 :func:`sys.exc_info` documentation.
 """
 # the arguments and the same as for greenlet.throw
 return self.send(None, args)

[docs]class TEvent:
 """A synchronization primitive that allows one greenlet to wake up one or more others. It has
 the same interface as :class:`threading.Event` but works across greenlets.

 An event object manages an internal flag that can be set to true with the :meth:`set` method and
 reset to false with the :meth:`clear` method. The :meth:`wait` method blocks until the flag is
 true.
 """

 def __init__(self):
 self._links = set()
 self._todo = set()
 self._flag = False
 self.hub = get_hub()
 self._notifier = None

 def __str__(self):
 return '<%s %s _links[%s]>' % (
 self.__class__.__name__, (self._flag and 'set') or 'clear', len(self._links))

[docs] def is_set(self):
 """Return true if and only if the internal flag is true."""
 return self._flag

 isSet = is_set # makes it a better drop-in replacement for threading.Event
 ready = is_set # makes it compatible with AsyncResult and Greenlet (for example in wait())

[docs] def set(self):
 """Set the internal flag to true. All greenlets waiting for it to become true are awakened.
 Greenlets that call :meth:`wait` once the flag is true will not block at all.
 """
 self._flag = True
 self._todo.update(self._links)
 if self._todo and not self._notifier:
 self._notifier = True
 self.hub.schedule_call_now(self._notify_links)

[docs] def clear(self):
 """Reset the internal flag to false.
 Subsequently, threads calling :meth:`wait`
 will block until :meth:`set` is called to set the internal flag to true again.
 """
 self._flag = False

[docs] def wait(self, timeout=None):
 """Block until the internal flag is true.
 If the internal flag is true on entry, return immediately. Otherwise,
 block until another thread calls :meth:`set` to set the flag to true,
 or until the optional timeout occurs.

 When the *timeout* argument is present and not ``None``, it should be a
 floating point number specifying a timeout for the operation in seconds
 (or fractions thereof).

 Return the value of the internal flag (``True`` or ``False``).
 """
 if self._flag:
 return self._flag
 else:
 switch = greenlet.getcurrent().switch
 self.rawlink(switch)
 try:
 timer = Timeout(timeout)
 try:
 try:
 gyield(False)
 # assert result is self, 'Invalid switch into Event.wait(): %r' % (result,)
 except Timeout as ex:
 if ex is not timer:
 raise
 finally:
 timer.cancel()
 finally:
 self.unlink(switch)
 return self._flag

[docs] def rawlink(self, callback):
 """Register a callback to call when the internal flag is set to true

 callback will be called in the :class:`Hub <gevent.hub.Hub>`, so it must not use blocking
 gevent API. callback will be passed one argument: this instance.
 """
 if not callable(callback):
 raise TypeError('Expected callable: %r' % (callback,))
 self._links.add(callback)
 if self._flag and not self._notifier:
 self._todo.add(callback)
 self._notifier = True
 self.hub.schedule_call_now(self._notify_links)

[docs] def unlink(self, callback):
 """Remove the callback set by :meth:`rawlink`"""
 try:
 self._links.remove(callback)
 except ValueError:
 pass

 def _notify_links(self):
 while self._todo:
 link = self._todo.pop()
 if link in self._links:
 # check that link was not notified yet and was not removed by the client
 try:
 link(self)
 except:
 self.hub.handle_error((link, self), *sys.exc_info())

 def _reset_internal_locks(self):
 """For compatibility with threading.Event (only in case of patch_all(Event=True),
 by default Event is not patched)

 Exception AttributeError: AttributeError("'Event' object has no attribute
 '_reset_internal_locks'",)
 in <module 'threading' from '/usr/lib/python2.7/threading.pyc'> ignored
 """
 pass

[docs]class AsyncResult:
 """A one-time event that stores a value or an exception

 Like :class:`Event` it wakes up all the waiters when :meth:`set` or :meth:`set_exception` method
 is called. Waiters may receive the passed value or exception by calling :meth:`get` method
 instead of :meth:`wait`. An :class:`AsyncResult` instance cannot be reset.

 To pass a value call :meth:`set`. Calls to :meth:`get` (those that currently blocking as well as
 those made in the future) will return the value:

 >>> result = AsyncResult()
 >>> result.set(100)
 >>> result.get()
 100

 To pass an exception call :meth:`set_exception`. This will cause :meth:`get` to raise that
 exception:

 >>> result = AsyncResult()
 >>> result.set_exception(RuntimeError('failure'))
 >>> result.get()
 Traceback (most recent call last):
 ...
 RuntimeError: failure

 :class:`AsyncResult` implements :meth:`__call__` and thus can be used as :meth:`link` target:

 >>> import gevent
 >>> result = AsyncResult()
 >>> gevent.spawn(lambda : 1/0).link(result)
 >>> try:
 ... result.get()
 ... except ZeroDivisionError:
 ... print 'ZeroDivisionError'
 ZeroDivisionError
 """

 def __init__(self):
 self._links = deque()
 self.value = None
 self._exception = _NONE
 self.hub = get_hub()
 self._notifier = None

 def __str__(self):
 result = '<%s ' % (self.__class__.__name__,)
 if self.value is not None or self._exception is not _NONE:
 result += 'value=%r ' % self.value
 if self._exception is not None and self._exception is not _NONE:
 result += 'exception=%r ' % self._exception
 if self._exception is _NONE:
 result += 'unset '
 return result + ' _links[%s]>' % len(self._links)

[docs] def ready(self):
 """Return true if and only if it holds a value or an exception"""
 return self._exception is not _NONE

[docs] def successful(self):
 """Return true if and only if it is ready and holds a value"""
 return self._exception is None

 @property
 def exception(self):
 """Holds the exception instance passed to :meth:`set_exception` if :meth:`set_exception`
 was called.
 Otherwise ``None``."""
 if self._exception is not _NONE:
 return self._exception

[docs] def set(self, value=None):
 """Store the value. Wake up the waiters.

 All greenlets blocking on :meth:`get` or :meth:`wait` are woken up.
 Sequential calls to :meth:`wait` and :meth:`get` will not block at all.
 """
 self.value = value
 self._exception = None
 if self._links and not self._notifier:
 self._notifier = self.hub.loop.run_callback(self._notify_links)

[docs] def set_exception(self, exception):
 """Store the exception. Wake up the waiters.

 All greenlets blocking on :meth:`get` or :meth:`wait` are woken up.
 Sequential calls to :meth:`wait` and :meth:`get` will not block at all.
 """
 self._exception = exception
 if self._links and not self._notifier:
 self._notifier = self.hub.loop.run_callback(self._notify_links)

[docs] def get(self, block=True, timeout=None):
 """Return the stored value or raise the exception.

 If this instance already holds a value / an exception, return / raise it immediatelly.
 Otherwise, block until another greenlet calls :meth:`set` or :meth:`set_exception` or
 until the optional timeout occurs.

 When the *timeout* argument is present and not ``None``, it should be a
 floating point number specifying a timeout for the operation in seconds
 (or fractions thereof).
 """
 if self._exception is not _NONE:
 if self._exception is None:
 return self.value
 raise self._exception
 elif block:
 switch = greenlet.getcurrent().switch
 self.rawlink(switch)
 try:
 timer = Timeout(timeout)
 try:
 result = self.hub.switch()
 assert result is self, 'Invalid switch into AsyncResult.get(): %r' % (result,)
 finally:
 timer.cancel()
 except:
 self.unlink(switch)
 raise
 if self._exception is None:
 return self.value
 raise self._exception
 else:
 raise Timeout

[docs] def get_nowait(self):
 """Return the value or raise the exception without blocking.

 If nothing is available, raise :class:`gevent.Timeout` immediatelly.
 """
 return self.get(block=False)

[docs] def wait(self, timeout=None):
 """Block until the instance is ready.

 If this instance already holds a value / an exception, return immediatelly.
 Otherwise, block until another thread calls :meth:`set` or :meth:`set_exception` or
 until the optional timeout occurs.

 When the *timeout* argument is present and not ``None``, it should be a
 floating point number specifying a timeout for the operation in seconds
 (or fractions thereof).

 Return :attr:`value`.
 """
 if self._exception is not _NONE:
 return self.value
 else:
 switch = greenlet.getcurrent().switch
 self.rawlink(switch)
 try:
 timer = Timeout(timeout)
 try:
 result = self.hub.switch()
 assert result is self, 'Invalid switch into AsyncResult.wait(): %r' % (result,)
 finally:
 timer.cancel()
 except Timeout as exc:
 self.unlink(switch)
 if exc is not timer:
 raise
 except:
 self.unlink(switch)
 raise
 # not calling unlink() in non-exception case, because if switch()
 # finished normally, link was already removed in _notify_links
 return self.value

 def _notify_links(self):
 while self._links:
 link = self._links.popleft()
 try:
 link(self)
 except:
 self.hub.handle_error((link, self), *sys.exc_info())

[docs] def rawlink(self, callback):
 """Register a callback to call when a value or an exception is set.

 callback will be called in the :class:`Hub <gevent.hub.Hub>`, so it must not use
 blocking gevent API.
 callback will be passed one argument: this instance.
 """
 if not callable(callback):
 raise TypeError('Expected callable: %r' % (callback,))
 self._links.append(callback)
 if self.ready() and not self._notifier:
 self._notifier = self.hub.loop.run_callback(self._notify_links)

[docs] def unlink(self, callback):
 """Remove the callback set by :meth:`rawlink`"""
 try:
 self._links.remove(callback)
 except ValueError:
 pass

 # link protocol

 def __call__(self, source):
 if source.successful():
 self.set(source.value)
 else:
 self.set_exception(source.exception)

 © Copyright 2014, V G.
 Created using Sphinx 1.3.1.

_static/comment.png

_modules/guv/websocket.html

 Navigation

 		
 index

 		
 modules |

 		guv 0.35.2 documentation »

 		Module code »

 Source code for guv.websocket

import base64
import codecs
import collections
import errno
from random import Random
from socket import error as SocketError
import string
import struct
import sys
import time
from hashlib import md5, sha1

from . import semaphore, wsgi
from .green import socket

class _AlreadyHandled:
 def __iter__(self):
 return self

 def next(self):
 raise StopIteration

 __next__ = next

ALREADY_HANDLED = _AlreadyHandled()

Python 2's utf8 decoding is more lenient than we'd like
In order to pass autobahn's testsuite we need stricter validation
if available...
for _mod in ('wsaccel.utf8validator', 'autobahn.utf8validator'):
 # autobahn has it's own python-based validator. in newest versions
 # this prefers to use wsaccel, a cython based implementation, if available.
 # wsaccel may also be installed w/out autobahn, or with a earlier version.
 try:
 utf8validator = __import__(_mod, {}, {}, [''])
 except ImportError:
 utf8validator = None
 else:
 break

ACCEPTABLE_CLIENT_ERRORS = set((errno.ECONNRESET, errno.EPIPE))

__all__ = ["WebSocketWSGI", "WebSocket"]
PROTOCOL_GUID = b'258EAFA5-E914-47DA-95CA-C5AB0DC85B11'
VALID_CLOSE_STATUS = set(
 list(range(1000, 1004)) +
 list(range(1007, 1012)) +
 # 3000-3999: reserved for use by libraries, frameworks,
 # and applications
 list(range(3000, 4000)) +
 # 4000-4999: reserved for private use and thus can't
 # be registered
 list(range(4000, 5000))
)

class BadRequest(Exception):
 def __init__(self, status='400 Bad Request', body=None, headers=None):
 super(Exception, self).__init__()
 self.status = status
 self.body = body
 self.headers = headers

[docs]class WebSocketWSGI(object):
 """Wraps a websocket handler function in a WSGI application.

 Use it like this::

 @websocket.WebSocketWSGI
 def my_handler(ws):
 from_browser = ws.wait()
 ws.send("from server")

 The single argument to the function will be an instance of
 :class:`WebSocket`. To close the socket, simply return from the
 function. Note that the server will log the websocket request at
 the time of closure.
 """

 def __init__(self, handler):
 self.handler = handler
 self.protocol_version = None
 self.support_legacy_versions = True
 self.supported_protocols = []
 self.origin_checker = None

 @classmethod
 def configured(cls,
 handler=None,
 supported_protocols=None,
 origin_checker=None,
 support_legacy_versions=False):
 def decorator(handler):
 inst = cls(handler)
 inst.support_legacy_versions = support_legacy_versions
 inst.origin_checker = origin_checker
 if supported_protocols:
 inst.supported_protocols = supported_protocols
 return inst

 if handler is None:
 return decorator
 return decorator(handler)

 def __call__(self, environ, start_response):
 http_connection_parts = [
 part.strip()
 for part in environ.get('HTTP_CONNECTION', '').lower().split(',')]
 if not ('upgrade' in http_connection_parts and
 environ.get('HTTP_UPGRADE', '').lower() == 'websocket'):
 # need to check a few more things here for true compliance
 start_response('400 Bad Request', [('Connection', 'close')])
 return []

 try:
 if 'HTTP_SEC_WEBSOCKET_VERSION' in environ:
 ws = self._handle_hybi_request(environ)
 elif self.support_legacy_versions:
 ws = self._handle_legacy_request(environ)
 else:
 raise BadRequest()
 except BadRequest as e:
 status = e.status
 body = e.body or b''
 headers = e.headers or []
 start_response(status,
 [('Connection', 'close'),] + headers)
 return [body]

 try:
 self.handler(ws)
 except socket.error as e:
 if e.args[0] not in ACCEPTABLE_CLIENT_ERRORS:
 raise
 # Make sure we send the closing frame
 ws._send_closing_frame(True)
 # use this undocumented feature of guv.wsgi to ensure that it
 # doesn't barf on the fact that we didn't call start_response
 return wsgi.ALREADY_HANDLED

 def _handle_legacy_request(self, environ):
 sock = environ['guv.input'].get_socket()

 if 'HTTP_SEC_WEBSOCKET_KEY1' in environ:
 self.protocol_version = 76
 if 'HTTP_SEC_WEBSOCKET_KEY2' not in environ:
 raise BadRequest()
 else:
 self.protocol_version = 75

 if self.protocol_version == 76:
 key1 = self._extract_number(environ['HTTP_SEC_WEBSOCKET_KEY1'])
 key2 = self._extract_number(environ['HTTP_SEC_WEBSOCKET_KEY2'])
 # There's no content-length header in the request, but it has 8
 # bytes of data.
 environ['wsgi.input'].content_length = 8
 key3 = environ['wsgi.input'].read(8)
 key = struct.pack(">II", key1, key2) + key3
 response = md5(key).digest()

 # Start building the response
 scheme = 'ws'
 if environ.get('wsgi.url_scheme') == 'https':
 scheme = 'wss'
 location = '%s://%s%s%s' % (
 scheme,
 environ.get('HTTP_HOST'),
 environ.get('SCRIPT_NAME'),
 environ.get('PATH_INFO')
)
 qs = environ.get('QUERY_STRING')
 if qs is not None:
 location += '?' + qs
 if self.protocol_version == 75:
 handshake_reply = ("HTTP/1.1 101 Web Socket Protocol Handshake\r\n"
 "Upgrade: WebSocket\r\n"
 "Connection: Upgrade\r\n"
 "WebSocket-Origin: %s\r\n"
 "WebSocket-Location: %s\r\n\r\n" % (
 environ.get('HTTP_ORIGIN'),
 location))
 elif self.protocol_version == 76:
 handshake_reply = ("HTTP/1.1 101 WebSocket Protocol Handshake\r\n"
 "Upgrade: WebSocket\r\n"
 "Connection: Upgrade\r\n"
 "Sec-WebSocket-Origin: %s\r\n"
 "Sec-WebSocket-Protocol: %s\r\n"
 "Sec-WebSocket-Location: %s\r\n"
 "\r\n%s" % (
 environ.get('HTTP_ORIGIN'),
 environ.get('HTTP_SEC_WEBSOCKET_PROTOCOL', 'default'),
 location,
 response))
 else: # pragma NO COVER
 raise ValueError("Unknown WebSocket protocol version.")
 sock.sendall(handshake_reply)
 return WebSocket(sock, environ, self.protocol_version)

 def _handle_hybi_request(self, environ):
 sock = environ['guv.input'].get_socket()
 hybi_version = environ['HTTP_SEC_WEBSOCKET_VERSION']
 if hybi_version not in ('8', '13',):
 raise BadRequest(status='426 Upgrade Required',
 headers=[('Sec-WebSocket-Version', '8, 13')])
 self.protocol_version = int(hybi_version)
 if 'HTTP_SEC_WEBSOCKET_KEY' not in environ:
 # That's bad.
 raise BadRequest()
 origin = environ.get(
 'HTTP_ORIGIN',
 (environ.get('HTTP_SEC_WEBSOCKET_ORIGIN', '')
 if self.protocol_version <= 8 else ''))
 if self.origin_checker is not None:
 if not self.origin_checker(environ.get('HTTP_HOST'), origin):
 raise BadRequest(status='403 Forbidden')
 protocols = environ.get('HTTP_SEC_WEBSOCKET_PROTOCOL', None)
 negotiated_protocol = None
 if protocols:
 for p in (i.strip() for i in protocols.split(',')):
 if p in self.supported_protocols:
 negotiated_protocol = p
 break
 # extensions = environ.get('HTTP_SEC_WEBSOCKET_EXTENSIONS', None)
 # if extensions:
 # extensions = [i.strip() for i in extensions.split(',')]

 key = environ['HTTP_SEC_WEBSOCKET_KEY']
 response = base64.b64encode(sha1(bytes(key, 'latin-1') + PROTOCOL_GUID).digest())
 handshake_reply = [b"HTTP/1.1 101 Switching Protocols",
 b"Upgrade: websocket",
 b"Connection: Upgrade",
 b"Sec-WebSocket-Accept: " + response]
 if negotiated_protocol:
 handshake_reply.append(b"Sec-WebSocket-Protocol: " +
 bytes(negotiated_protocol, 'latin-1'))
 sock.sendall(b'\r\n'.join(handshake_reply) + b'\r\n\r\n')
 return RFC6455WebSocket(sock, environ, self.protocol_version,
 protocol=negotiated_protocol)

 def _extract_number(self, value):
 """
 Utility function which, given a string like 'g98sd 5[]221@1', will
 return 9852211. Used to parse the Sec-WebSocket-Key headers.
 """
 out = ""
 spaces = 0
 for char in value:
 if char in string.digits:
 out += char
 elif char == " ":
 spaces += 1
 return int(out) / spaces

[docs]class WebSocket(object):
 """A websocket object that handles the details of
 serialization/deserialization to the socket.

 The primary way to interact with a :class:`WebSocket` object is to
 call :meth:`send` and :meth:`wait` in order to pass messages back
 and forth with the browser. Also available are the following
 properties:

 path
 The path value of the request. This is the same as the WSGI PATH_INFO variable,
 but more convenient.
 protocol
 The value of the Websocket-Protocol header.
 origin
 The value of the 'Origin' header.
 environ
 The full WSGI environment for this request.

 """

[docs] def __init__(self, sock, environ, version=76):
 """
 :param socket: The guv socket
 :type socket: :class:`eventlet.greenio.GreenSocket`
 :param environ: The wsgi environment
 :param version: The WebSocket spec version to follow (default is 76)
 """
 self.socket = sock
 self.origin = environ.get('HTTP_ORIGIN')
 self.protocol = environ.get('HTTP_WEBSOCKET_PROTOCOL')
 self.path = environ.get('PATH_INFO')
 self.environ = environ
 self.version = version
 self.websocket_closed = False
 self._buf = ""
 self._msgs = collections.deque()
 self._sendlock = semaphore.Semaphore()

 @staticmethod
 def _pack_message(message):
 """Pack the message inside ``00`` and ``FF``

 As per the dataframing section (5.3) for the websocket spec
 """
 if isinstance(message, str):
 message = message.encode('UTF-8')
 elif not isinstance(message, bytes):
 message = bytes(message, 'UTF-8')
 packed = bytes('\x00%s\xFF' % message, 'UTF-8')
 return packed

 def _parse_messages(self):
 """ Parses for messages in the buffer *buf*. It is assumed that
 the buffer contains the start character for a message, but that it
 may contain only part of the rest of the message.

 Returns an array of messages, and the buffer remainder that
 didn't contain any full messages."""
 msgs = []
 end_idx = 0
 buf = self._buf
 while buf:
 frame_type = ord(buf[0])
 if frame_type == 0:
 # Normal message.
 end_idx = buf.find("\xFF")
 if end_idx == -1: # pragma NO COVER
 break
 msgs.append(buf[1:end_idx].decode('utf-8', 'replace'))
 buf = buf[end_idx + 1:]
 elif frame_type == 255:
 # Closing handshake.
 assert ord(buf[1]) == 0, "Unexpected closing handshake: %r" % buf
 self.websocket_closed = True
 break
 else:
 raise ValueError("Don't understand how to parse this type of message: %r" % buf)
 self._buf = buf
 return msgs

[docs] def send(self, message):
 """Send a message to the browser.

 message should be convertable to a string; unicode objects should be
 encodable as utf-8. Raises socket.error with errno of 32
 (broken pipe) if the socket has already been closed by the client."""
 packed = self._pack_message(message)
 # if two greenthreads are trying to send at the same time
 # on the same socket, sendlock prevents interleaving and corruption
 self._sendlock.acquire()
 try:
 self.socket.sendall(packed)
 finally:
 self._sendlock.release()

[docs] def wait(self):
 """Waits for and deserializes messages.

 Returns a single message; the oldest not yet processed. If the client
 has already closed the connection, returns None. This is different
 from normal socket behavior because the empty string is a valid
 websocket message."""
 while not self._msgs:
 # Websocket might be closed already.
 if self.websocket_closed:
 return None
 # no parsed messages, must mean buf needs more data
 delta = self.socket.recv(8096)
 if delta == '':
 return None
 self._buf += delta
 msgs = self._parse_messages()
 self._msgs.extend(msgs)
 return self._msgs.popleft()

 def _send_closing_frame(self, ignore_send_errors=False):
 """Sends the closing frame to the client, if required."""
 if self.version == 76 and not self.websocket_closed:
 try:
 self.socket.sendall(b"\xff\x00")
 except SocketError:
 # Sometimes, like when the remote side cuts off the connection,
 # we don't care about this.
 if not ignore_send_errors: # pragma NO COVER
 raise
 self.websocket_closed = True

[docs] def close(self):
 """Forcibly close the websocket; generally it is preferable to
 return from the handler method."""
 self._send_closing_frame()
 self.socket.shutdown(True)
 self.socket.close()

class ConnectionClosedError(Exception):
 pass

class FailedConnectionError(Exception):
 def __init__(self, status, message):
 super(FailedConnectionError, self).__init__(status, message)
 self.message = message
 self.status = status

class ProtocolError(ValueError):
 pass

class RFC6455WebSocket(WebSocket):
 def __init__(self, sock, environ, version=13, protocol=None, client=False):
 super(RFC6455WebSocket, self).__init__(sock, environ, version)
 self.iterator = self._iter_frames()
 self.client = client
 self.protocol = protocol

 class UTF8Decoder(object):
 def __init__(self):
 if utf8validator:
 self.validator = utf8validator.Utf8Validator()
 else:
 self.validator = None
 decoderclass = codecs.getincrementaldecoder('utf8')
 self.decoder = decoderclass()

 def reset(self):
 if self.validator:
 self.validator.reset()
 self.decoder.reset()

 def decode(self, data, final=False):
 if self.validator:
 valid, eocp, c_i, t_i = self.validator.validate(data)
 if not valid:
 raise ValueError('Data is not valid unicode')
 return self.decoder.decode(data, final)

 def _get_bytes(self, numbytes):
 data = b''
 while len(data) < numbytes:
 d = self.socket.recv(numbytes - len(data))
 if not d:
 raise ConnectionClosedError()
 data = data + d
 return data

 class Message(object):
 def __init__(self, opcode, decoder=None):
 self.decoder = decoder
 self.data = []
 self.finished = False
 self.opcode = opcode

 def push(self, data, final=False):
 if self.decoder:
 data = self.decoder.decode(data, final=final)
 self.finished = final
 self.data.append(data)

 def getvalue(self):
 return ('' if self.decoder else b'').join(self.data)

 @staticmethod
 def _apply_mask(data, mask, length=None, offset=0):
 if length is None:
 length = len(data)
 cnt = range(length)
 return b''.join(int.to_bytes(data[i] ^ mask[(offset + i) % 4], 1, 'big') for i in cnt)

 def _handle_control_frame(self, opcode, data):
 if opcode == 8: # connection close
 if not data:
 status = 1000
 elif len(data) > 1:
 status = struct.unpack_from('!H', data)[0]
 if not status or status not in VALID_CLOSE_STATUS:
 raise FailedConnectionError(
 1002,
 "Unexpected close status code.")
 try:
 data = self.UTF8Decoder().decode(data[2:], True)
 except (UnicodeDecodeError, ValueError):
 raise FailedConnectionError(
 1002,
 "Close message data should be valid UTF-8.")
 else:
 status = 1002
 self.close(close_data=(status, ''))
 raise ConnectionClosedError()
 elif opcode == 9: # ping
 self.send(data, control_code=0xA)
 elif opcode == 0xA: # pong
 pass
 else:
 raise FailedConnectionError(
 1002, "Unknown control frame received.")

 def _iter_frames(self):
 fragmented_message = None
 try:
 while True:
 message = self._recv_frame(message=fragmented_message)
 if message.opcode & 8:
 self._handle_control_frame(
 message.opcode, message.getvalue())
 continue
 if fragmented_message and message is not fragmented_message:
 raise RuntimeError('Unexpected message change.')
 fragmented_message = message
 if message.finished:
 data = fragmented_message.getvalue()
 fragmented_message = None
 yield data
 except FailedConnectionError:
 exc_typ, exc_val, exc_tb = sys.exc_info()
 self.close(close_data=(exc_val.status, exc_val.message))
 except ConnectionClosedError:
 return
 except Exception:
 self.close(close_data=(1011, 'Internal Server Error'))
 raise

 def _recv_frame(self, message=None):
 recv = self._get_bytes
 header = recv(2)
 a, b = struct.unpack('!BB', header)
 finished = a >> 7 == 1
 rsv123 = a >> 4 & 7
 if rsv123:
 # must be zero
 raise FailedConnectionError(
 1002,
 "RSV1, RSV2, RSV3: MUST be 0 unless an extension is"
 " negotiated that defines meanings for non-zero values.")
 opcode = a & 15
 if opcode not in (0, 1, 2, 8, 9, 0xA):
 raise FailedConnectionError(1002, "Unknown opcode received.")
 masked = b & 128 == 128
 if not masked and not self.client:
 raise FailedConnectionError(1002, "A client MUST mask all frames"
 " that it sends to the server")
 length = b & 127
 if opcode & 8:
 if not finished:
 raise FailedConnectionError(1002, "Control frames must not"
 " be fragmented.")
 if length > 125:
 raise FailedConnectionError(
 1002,
 "All control frames MUST have a payload length of 125"
 " bytes or less")
 elif opcode and message:
 raise FailedConnectionError(
 1002,
 "Received a non-continuation opcode within"
 " fragmented message.")
 elif not opcode and not message:
 raise FailedConnectionError(
 1002,
 "Received continuation opcode with no previous"
 " fragments received.")
 if length == 126:
 length = struct.unpack('!H', recv(2))[0]
 elif length == 127:
 length = struct.unpack('!Q', recv(8))[0]
 if masked:
 mask = struct.unpack('!BBBB', recv(4))
 received = 0
 if not message or opcode & 8:
 decoder = self.UTF8Decoder() if opcode == 1 else None
 message = self.Message(opcode, decoder=decoder)
 if not length:
 message.push('', final=finished)
 else:
 while received < length:
 d = self.socket.recv(length - received)
 if not d:
 raise ConnectionClosedError()
 dlen = len(d)
 if masked:
 d = self._apply_mask(d, mask, length=dlen, offset=received)
 received += dlen
 try:
 message.push(d, final=finished)
 except (UnicodeDecodeError, ValueError):
 raise FailedConnectionError(
 1007, "Text data must be valid utf-8")
 return message

 @staticmethod
 def _pack_message(message, masked=False,
 continuation=False, final=True, control_code=None):
 is_text = False
 if isinstance(message, str):
 message = message.encode('utf-8')
 is_text = True
 length = len(message)
 if not length:
 # no point masking empty data
 masked = False
 if control_code:
 if control_code not in (8, 9, 0xA):
 raise ProtocolError('Unknown control opcode.')
 if continuation or not final:
 raise ProtocolError('Control frame cannot be a fragment.')
 if length > 125:
 raise ProtocolError('Control frame data too large (>125).')
 header = struct.pack('!B', control_code | 1 << 7)
 else:
 opcode = 0 if continuation else (1 if is_text else 2)
 header = struct.pack('!B', opcode | (1 << 7 if final else 0))
 lengthdata = 1 << 7 if masked else 0
 if length > 65535:
 lengthdata = struct.pack('!BQ', lengthdata | 127, length)
 elif length > 125:
 lengthdata = struct.pack('!BH', lengthdata | 126, length)
 else:
 lengthdata = struct.pack('!B', lengthdata | length)
 if masked:
 # NOTE: RFC6455 states:
 # A server MUST NOT mask any frames that it sends to the client
 rand = Random(time.time())
 mask = [rand.getrandbits(8) for _ in range(4)]
 message = RFC6455WebSocket._apply_mask(message, mask, length)
 maskdata = struct.pack('!BBBB', *mask)
 else:
 maskdata = b''

 return b''.join((header, lengthdata, maskdata, message))

 def wait(self):
 for i in self.iterator:
 return i

 def _send(self, frame):
 self._sendlock.acquire()
 try:
 self.socket.sendall(frame)
 finally:
 self._sendlock.release()

 def send(self, message, **kw):
 kw['masked'] = self.client
 payload = self._pack_message(message, **kw)
 self._send(payload)

 def _send_closing_frame(self, ignore_send_errors=False, close_data=None):
 if self.version in (8, 13) and not self.websocket_closed:
 if close_data is not None:
 status, msg = close_data
 if isinstance(msg, str):
 msg = msg.encode('utf-8')
 data = struct.pack('!H', status) + msg
 else:
 data = ''
 try:
 self.send(data, control_code=8)
 except SocketError:
 # Sometimes, like when the remote side cuts off the connection,
 # we don't care about this.
 if not ignore_send_errors: # pragma NO COVER
 raise
 self.websocket_closed = True

 def close(self, close_data=None):
 """Forcibly close the websocket; generally it is preferable to
 return from the handler method."""
 self._send_closing_frame(close_data=close_data)
 self.socket.shutdown(socket.SHUT_WR)
 self.socket.close()

 © Copyright 2014, V G.
 Created using Sphinx 1.3.1.

_modules/guv/semaphore.html

 Navigation

 		
 index

 		
 modules |

 		guv 0.35.2 documentation »

 		Module code »

 Source code for guv.semaphore

import greenlet

from .patcher import original

time = original('time')
import logging

from . import hubs

from .timeout import Timeout

log = logging.getLogger('guv')

[docs]class Semaphore:
 """An unbounded semaphore

 Optionally initialize with a resource *count*, then :meth:`acquire` and :meth:`release`
 resources as needed. Attempting to :meth:`acquire` when count* is zero suspends the calling
 greenthread until *count* becomes nonzero again.

 This is API-compatible with :class:`threading.Semaphore`.

 It is a context manager, and thus can be used in a with block::

 sem = Semaphore(2)
 with sem:
 do_some_stuff()

 If not specified, *value* defaults to 1.

 It is possible to limit acquire time::

 sem = Semaphore()
 ok = sem.acquire(timeout=0.1)
 # True if acquired, False if timed out.
 """

 def __init__(self, value=1):
 self.counter = value
 if value < 0:
 raise ValueError("Semaphore must be initialized with a positive "
 "number, got %s" % value)
 self._waiters = set()

 def __repr__(self):
 params = (self.__class__.__name__, hex(id(self)),
 self.counter, len(self._waiters))
 return '<%s at %s c=%s _w[%s]>' % params

 def __str__(self):
 params = (self.__class__.__name__, self.counter, len(self._waiters))
 return '<%s c=%s _w[%s]>' % params

[docs] def locked(self):
 """Returns true if a call to acquire would block.
 """
 return self.counter <= 0

[docs] def bounded(self):
 """Returns False; for consistency with
 :class:`~guv.semaphore.CappedSemaphore`.
 """
 return False

[docs] def acquire(self, blocking=True, timeout=None):
 """Acquire a semaphore

 This function behaves like :meth:`threading.Lock.acquire`.

 When invoked without arguments: if the internal counter is larger than
 zero on entry, decrement it by one and return immediately. If it is zero
 on entry, block, waiting until some other thread has called release() to
 make it larger than zero. This is done with proper interlocking so that
 if multiple acquire() calls are blocked, release() will wake exactly one
 of them up. The implementation may pick one at random, so the order in
 which blocked threads are awakened should not be relied on. There is no
 return value in this case.

 When invoked with blocking set to true, do the same thing as when called
 without arguments, and return true.

 When invoked with blocking set to false, do not block. If a call without
 an argument would block, return false immediately; otherwise, do the
 same thing as when called without arguments, and return true.
 """
 if not blocking and timeout is not None:
 raise ValueError('must not specify timeout for non-blocking acquire')

 if not blocking and self.locked():
 return False

 if isinstance(timeout, (float, int)) and timeout < 0:
 timeout = None

 if self.counter <= 0:
 self._waiters.add(greenlet.getcurrent())
 try:
 if timeout is not None:
 ok = False
 with Timeout(timeout, False):
 while self.counter <= 0:
 hubs.get_hub().switch()
 ok = True
 if not ok:
 return False
 else:
 while self.counter <= 0:
 # running = hubs.get_hub().running
 # if not running:
 # log.warn('Loop is no longer running, potential deadlock: (at {}) {}\n'
 # 'waiters: {}'
 # .format(id(self), self, self._waiters))
 # return
 hubs.get_hub().switch()
 finally:
 self._waiters.discard(greenlet.getcurrent())
 self.counter -= 1
 return True

 def __enter__(self):
 self.acquire()

[docs] def release(self, blocking=True):
 """Release a semaphore, incrementing the internal counter by one. When
 it was zero on entry and another thread is waiting for it to become
 larger than zero again, wake up that thread.

 The *blocking* argument is for consistency with CappedSemaphore and is
 ignored
 """
 self.counter += 1
 if self._waiters:
 hubs.get_hub().schedule_call_now(self._do_acquire)
 return True

 def _do_acquire(self):
 if self._waiters and self.counter > 0:
 waiter = self._waiters.pop()
 waiter.switch()

 def __exit__(self, typ, val, tb):
 self.release()

 @property
 def balance(self):
 """An integer value that represents how many new calls to
 :meth:`acquire` or :meth:`release` would be needed to get the counter to
 0. If it is positive, then its value is the number of acquires that can
 happen before the next acquire would block. If it is negative, it is
 the negative of the number of releases that would be required in order
 to make the counter 0 again (one more release would push the counter to
 1 and unblock acquirers). It takes into account how many greenthreads
 are currently blocking in :meth:`acquire`.
 """
 # positive means there are free items
 # zero means there are no free items but nobody has requested one
 # negative means there are requests for items, but no items
 return self.counter - len(self._waiters)

[docs]class BoundedSemaphore(Semaphore):
 """A bounded semaphore checks to make sure its current value doesn't exceed
 its initial value. If it does, ValueError is raised. In most situations
 semaphores are used to guard resources with limited capacity. If the
 semaphore is released too many times it's a sign of a bug. If not given,
 value defaults to 1.
 """

 def __init__(self, value=1):
 super(BoundedSemaphore, self).__init__(value)
 self.original_counter = value

[docs] def release(self, blocking=True):
 """Release a semaphore, incrementing the internal counter by one. If
 the counter would exceed the initial value, raises ValueError. When
 it was zero on entry and another thread is waiting for it to become
 larger than zero again, wake up that thread.

 The *blocking* argument is for consistency with :class:`CappedSemaphore`
 and is ignored
 """
 if self.counter >= self.original_counter:
 raise ValueError("Semaphore released too many times")
 return super(BoundedSemaphore, self).release(blocking)

[docs]class CappedSemaphore:
 """A blockingly bounded semaphore.

 Optionally initialize with a resource *count*, then :meth:`acquire` and
 :meth:`release` resources as needed. Attempting to :meth:`acquire` when
 count is zero suspends the calling greenthread until count becomes nonzero
 again. Attempting to :meth:`release` after *count* has reached *limit*
 suspends the calling greenthread until *count* becomes less than *limit*
 again.

 This has the same API as :class:`threading.Semaphore`, though its
 semantics and behavior differ subtly due to the upper limit on calls
 to :meth:`release`. It is **not** compatible with
 :class:`threading.BoundedSemaphore` because it blocks when reaching *limit*
 instead of raising a ValueError.

 It is a context manager, and thus can be used in a with block::

 sem = CappedSemaphore(2)
 with sem:
 do_some_stuff()
 """

 def __init__(self, count, limit):
 if count < 0:
 raise ValueError("CappedSemaphore must be initialized with a "
 "positive number, got %s" % count)
 if count > limit:
 # accidentally, this also catches the case when limit is None
 raise ValueError("'count' cannot be more than 'limit'")
 self.lower_bound = Semaphore(count)
 self.upper_bound = Semaphore(limit - count)

 def __repr__(self):
 params = (self.__class__.__name__, hex(id(self)),
 self.balance, self.lower_bound, self.upper_bound)
 return '<%s at %s b=%s l=%s u=%s>' % params

 def __str__(self):
 params = (self.__class__.__name__, self.balance,
 self.lower_bound, self.upper_bound)
 return '<%s b=%s l=%s u=%s>' % params

[docs] def locked(self):
 """Returns true if a call to acquire would block.
 """
 return self.lower_bound.locked()

[docs] def bounded(self):
 """Returns true if a call to release would block.
 """
 return self.upper_bound.locked()

[docs] def acquire(self, blocking=True):
 """Acquire a semaphore.

 When invoked without arguments: if the internal counter is larger than
 zero on entry, decrement it by one and return immediately. If it is zero
 on entry, block, waiting until some other thread has called release() to
 make it larger than zero. This is done with proper interlocking so that
 if multiple acquire() calls are blocked, release() will wake exactly one
 of them up. The implementation may pick one at random, so the order in
 which blocked threads are awakened should not be relied on. There is no
 return value in this case.

 When invoked with blocking set to true, do the same thing as when called
 without arguments, and return true.

 When invoked with blocking set to false, do not block. If a call without
 an argument would block, return false immediately; otherwise, do the
 same thing as when called without arguments, and return true.
 """
 if not blocking and self.locked():
 return False
 self.upper_bound.release()
 try:
 return self.lower_bound.acquire()
 except:
 self.upper_bound.counter -= 1
 # using counter directly means that it can be less than zero.
 # however I certainly don't need to wait here and I don't seem to have
 # a need to care about such inconsistency
 raise

 def __enter__(self):
 self.acquire()

[docs] def release(self, blocking=True):
 """Release a semaphore. In this class, this behaves very much like
 an :meth:`acquire` but in the opposite direction.

 Imagine the docs of :meth:`acquire` here, but with every direction
 reversed. When calling this method, it will block if the internal
 counter is greater than or equal to *limit*.
 """
 if not blocking and self.bounded():
 return False
 self.lower_bound.release()
 try:
 return self.upper_bound.acquire()
 except:
 self.lower_bound.counter -= 1
 raise

 def __exit__(self, typ, val, tb):
 self.release()

 @property
 def balance(self):
 """An integer value that represents how many new calls to
 :meth:`acquire` or :meth:`release` would be needed to get the counter to
 0. If it is positive, then its value is the number of acquires that can
 happen before the next acquire would block. If it is negative, it is
 the negative of the number of releases that would be required in order
 to make the counter 0 again (one more release would push the counter to
 1 and unblock acquirers). It takes into account how many greenthreads
 are currently blocking in :meth:`acquire` and :meth:`release`.
 """
 return self.lower_bound.balance - self.upper_bound.balance

 © Copyright 2014, V G.
 Created using Sphinx 1.3.1.

_modules/guv/timeout.html

 Navigation

 		
 index

 		
 modules |

 		guv 0.35.2 documentation »

 		Module code »

 Source code for guv.timeout

import greenlet

from .hubs.hub import get_hub

__all__ = ['Timeout', 'with_timeout']

_NONE = object()

deriving from BaseException so that "except Exception as e" doesn't catch
Timeout exceptions.

[docs]class Timeout(BaseException):
 """Raise `exception` in the current greenthread after `timeout` seconds.

 When `exception` is omitted or ``None``, the :class:`Timeout` instance itself is raised. If
 `seconds` is None, the timer is not scheduled, and is only useful if you're planning to raise it
 directly.

 Timeout objects are context managers, and so can be used in with statements. When used in a with
 statement, if `exception` is ``False``, the timeout is still raised, but the context manager
 suppresses it, so the code outside the with-block won't see it.
 """

[docs] def __init__(self, seconds=None, exception=None):
 """
 :param float seconds: timeout seconds
 :param exception: exception to raise when timeout occurs
 """
 self.seconds = seconds
 self.exception = exception
 self.timer = None
 self.start()

[docs] def start(self):
 """Schedule the timeout. This is called on construction, so
 it should not be called explicitly, unless the timer has been
 canceled."""
 assert not self.pending, \
 '%r is already started; to restart it, cancel it first' % self
 if self.seconds is None: # "fake" timeout (never expires)
 self.timer = None
 elif self.exception is None or isinstance(self.exception, bool): # timeout that raises self
 self.timer = get_hub().schedule_call_global(
 self.seconds, greenlet.getcurrent().throw, self)
 else: # regular timeout with user-provided exception
 self.timer = get_hub().schedule_call_global(
 self.seconds, greenlet.getcurrent().throw, self.exception)
 return self

 @property
 def pending(self):
 """True if the timeout is scheduled to be raised
 """
 if self.timer is not None:
 return self.timer.pending
 else:
 return False

[docs] def cancel(self):
 """If the timeout is pending, cancel it

 If not using Timeouts in ``with`` statements, always call cancel() in a ``finally`` after
 the block of code that is getting timed out. If not canceled, the timeout will be raised
 later on, in some unexpected section of the application.
 """
 if self.timer is not None:
 self.timer.cancel()
 self.timer = None

 def __repr__(self):
 classname = self.__class__.__name__
 if self.pending:
 pending = ' pending'
 else:
 pending = ''
 if self.exception is None:
 exception = ''
 else:
 exception = ' exception=%r' % self.exception
 return '<%s at %s seconds=%s%s%s>' % (
 classname, hex(id(self)), self.seconds, exception, pending)

 def __str__(self):
 if self.seconds is None:
 return ''
 if self.seconds == 1:
 suffix = ''
 else:
 suffix = 's'
 if self.exception is None or self.exception is True:
 return '%s second%s' % (self.seconds, suffix)
 elif self.exception is False:
 return '%s second%s (silent)' % (self.seconds, suffix)
 else:
 return '%s second%s (%s)' % (self.seconds, suffix, self.exception)

 def __enter__(self):
 if self.timer is None:
 self.start()
 return self

 def __exit__(self, typ, value, tb):
 self.cancel()
 if value is self and self.exception is False:
 return True

[docs]def with_timeout(seconds, function, *args, **kwds):
 """Wrap a call to some (yielding) function with a timeout

 If the called function fails to return before the timeout, cancel it and return a flag value.
 """
 timeout_value = kwds.pop("timeout_value", _NONE)
 timeout = Timeout(seconds)
 try:
 try:
 return function(*args, **kwds)
 except Timeout as ex:
 if ex is timeout and timeout_value is not _NONE:
 return timeout_value
 raise
 finally:
 timeout.cancel()

 © Copyright 2014, V G.
 Created using Sphinx 1.3.1.

_static/minus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		guv 0.35.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, V G.
 Created using Sphinx 1.3.1.

_modules/guv/patcher.html

 Navigation

 		
 index

 		
 modules |

 		guv 0.35.2 documentation »

 		Module code »

 Source code for guv.patcher

import imp
import sys
import logging
import importlib

__all__ = ['monkey_patch', 'original', 'is_monkey_patched', 'inject', 'import_patched',
 'patch_function']

__exclude = {'__builtins__', '__file__', '__name__'}

log = logging.getLogger('guv')

class SysModulesSaver:
 """Class that captures some subset of the current state of sys.modules
 """

 def __init__(self, module_names=()):
 """
 :param module_names: iterator of module names
 """
 self._saved = {}
 imp.acquire_lock()
 self.save(*module_names)

 def save(self, *module_names):
 """Saves the named modules to the object."""
 for modname in module_names:
 self._saved[modname] = sys.modules.get(modname, None)

 def restore(self):
 """Restores the modules that the saver knows about into
 sys.modules.
 """
 try:
 for modname, mod in self._saved.items():
 if mod is not None:
 sys.modules[modname] = mod
 else:
 try:
 del sys.modules[modname]
 except KeyError:
 pass
 finally:
 imp.release_lock()

[docs]def inject(module_name, new_globals, *additional_modules):
 """Inject greenified modules into an imported module

 This method imports the module specified in `module_name`, arranging things so that the
 already-imported modules in `additional_modules` are used when `module_name` makes its imports.

 `new_globals` is either None or a globals dictionary that gets populated with the contents of
 the `module_name` module. This is useful when creating a "green" version of some other module.

 `additional_modules` should be a collection of two-element tuples, of the form
 ``(name: str, module: str)``. If it's not specified, a default selection of name/module pairs
 is used, which should cover all use cases but may be slower because there are inevitably
 redundant or unnecessary imports.
 """
 patched_name = '__patched_module_' + module_name
 if patched_name in sys.modules:
 # returning already-patched module so as not to destroy existing
 # references to patched modules
 return sys.modules[patched_name]

 if not additional_modules:
 # supply some defaults
 additional_modules = (
 _green_os_modules() +
 _green_select_modules() +
 _green_socket_modules() +
 _green_thread_modules() +
 _green_time_modules()
)

 # after this, we will be modifying sys.modules, so save the state
 # of all modules that will be modified, and lock
 saver = SysModulesSaver([name for name, m in additional_modules])
 saver.save(module_name)

 # cover the target modules, so that when you import the module, it will import
 # the patched version
 for name, mod in additional_modules:
 sys.modules[name] = mod

 # remove the old module from sys.modules and reimport it while
 # the specified modules are in place
 sys.modules.pop(module_name, None)
 try:
 module = __import__(module_name, {}, {}, module_name.split('.')[:-1])

 if new_globals is not None:
 # update the given globals dictionary with everything from this new module
 for name in dir(module):
 if name not in __exclude:
 new_globals[name] = getattr(module, name)

 # keep a reference to the new module to prevent it from dying
 sys.modules[patched_name] = module
 finally:
 saver.restore() # Put the original modules back

 return module

[docs]def import_patched(module_name, *additional_modules, **kw_additional_modules):
 """Import patched version of module

 :param str module_name: name of module to import
 """
 return inject(module_name, None, *additional_modules + tuple(kw_additional_modules.items()))

[docs]def patch_function(func, *additional_modules):
 """Decorator that returns a version of the function that patches some modules for the
 duration of the function call

 This should only be used for functions that import network libraries within their function
 bodies that there is no way of getting around.
 """
 if not additional_modules:
 # supply some defaults
 additional_modules = (
 _green_os_modules() +
 _green_select_modules() +
 _green_socket_modules() +
 _green_thread_modules() +
 _green_time_modules()
)

 def patched(*args, **kw):
 saver = SysModulesSaver()
 for name, mod in additional_modules:
 saver.save(name)
 sys.modules[name] = mod
 try:
 return func(*args, **kw)
 finally:
 saver.restore()

 return patched

def _original_patch_function(func, *module_names):
 """Opposite of :func:`patch_function`

 Decorates a function such that when it's called, sys.modules is populated only with the
 unpatched versions of the specified modules. Unlike patch_function, only the names of the
 modules need be supplied, and there are no defaults.
 """

 def patched(*args, **kw):
 saver = SysModulesSaver(module_names)
 for name in module_names:
 sys.modules[name] = original(name)
 try:
 return func(*args, **kw)
 finally:
 saver.restore()

 return patched

[docs]def original(modname):
 """Return an unpatched version of a module

 This is useful for guv itself.

 :param str modname: name of module
 """
 # note that it's not necessary to temporarily install unpatched
 # versions of all patchable modules during the import of the
 # module; this is because none of them import each other, except
 # for threading which imports thread
 original_name = '__original_module_' + modname
 if original_name in sys.modules:
 return sys.modules.get(original_name)

 # re-import the "pure" module and store it in the global _originals
 # dict; be sure to restore whatever module had that name already
 saver = SysModulesSaver((modname,))
 sys.modules.pop(modname, None)
 # some rudimentary dependency checking; fortunately the modules
 # we're working on don't have many dependencies so we can just do
 # some special-casing here
 deps = {'threading': '_thread', 'queue': 'threading'}
 if modname in deps:
 dependency = deps[modname]
 saver.save(dependency)
 sys.modules[dependency] = original(dependency)

 try:
 real_mod = __import__(modname, {}, {}, modname.split('.')[:-1])
 # save a reference to the unpatched module so it doesn't get lost
 sys.modules[original_name] = real_mod
 finally:
 saver.restore()

 return sys.modules[original_name]

already_patched = {}

[docs]def monkey_patch(**modules):
 """Globally patch/configure system modules to to be greenlet-friendly

 If no keyword arguments are specified, all possible modules are patched. If keyword arguments
 are specified, the specified modules (and their dependencies) will be patched.

 - Patching :mod:`socket` will also patch :mod:`ssl`
 - Patching :mod:`threading` will also patch :mod:`_thread` and :mod:`queue`

 It's safe to call monkey_patch multiple times.

 Example::

 monkey_patch(time=True, socket=True, select=True)

 :keyword bool time: time module: patches sleep()
 :keyword bool os: os module: patches open(), read(), write(), wait(), waitpid()
 :keyword bool socket: socket module: patches socket, create_connection()
 :keyword bool select: select module: patches select()
 :keyword bool threading: threading module: patches local, Lock(), stack_size(), current_thread()
 :keyword bool psycopg2: psycopg2 module: register a wait callback to yield
 :keyword bool cassandra: cassandra module: set connection class to GuvConnection
 """
 log.debug('Begin monkey-patching')
 accepted_args = {'os', 'select', 'socket', 'threading', 'time', 'psycopg2',
 'cassandra', '__builtin__'}
 default_modules = modules.pop('all', None)
 for k in modules.keys():
 if k not in accepted_args:
 raise TypeError('monkey_patch() got an unexpected keyword argument %r' % k)
 if default_modules is None:
 default_modules = not (True in modules.values())
 for modname in accepted_args:
 if modname == '__builtin__':
 modules.setdefault(modname, False)
 modules.setdefault(modname, default_modules)

 modules_to_patch = []
 if modules['os'] and not already_patched.get('os'):
 modules_to_patch += _green_os_modules()
 already_patched['os'] = True
 if modules['select'] and not already_patched.get('select'):
 modules_to_patch += _green_select_modules()
 already_patched['select'] = True
 if modules['socket'] and not already_patched.get('socket'):
 modules_to_patch += _green_socket_modules()
 already_patched['socket'] = True
 if modules['threading'] and not already_patched.get('threading'):
 modules_to_patch += _green_thread_modules()
 already_patched['threading'] = True
 if modules['time'] and not already_patched.get('time'):
 modules_to_patch += _green_time_modules()
 already_patched['time'] = True
 if modules.get('__builtin__') and not already_patched.get('__builtin__'):
 modules_to_patch += _green_builtins()
 already_patched['__builtin__'] = True
 if modules['psycopg2'] and not already_patched.get('psycopg2'):
 try:
 from guv.support import psycopg2_patcher

 psycopg2_patcher.make_psycopg_green()
 already_patched['psycopg2'] = True
 except ImportError:
 pass

 imp.acquire_lock()
 try:
 for name, mod in modules_to_patch:
 log.debug('patch: {:20} -> {}'.format(name, mod))
 orig_mod = sys.modules.get(name)
 if orig_mod is None:
 orig_mod = importlib.import_module(name)
 for attr_name in mod.__patched__:
 patched_attr = getattr(mod, attr_name, None)
 if patched_attr is not None:
 setattr(orig_mod, attr_name, patched_attr)
 finally:
 imp.release_lock()

 # Cassandra must be patched after other modules have been patched
 if modules['cassandra'] and not already_patched.get('cassandra'):
 try:
 import cassandra.cluster
 from guv.support.cassandra import GuvConnection

 cassandra.cluster.DefaultConnection = GuvConnection
 cassandra.cluster.Cluster.connection_class = GuvConnection

 already_patched['cassandra'] = True
 except ImportError:
 pass

[docs]def is_monkey_patched(module):
 """Check if the specified module is currently patched

 Based entirely off the name of the module, so if you import a module some other way than with
 the import keyword (including import_patched), this might not be correct about that particular
 module

 :param module: module to check (moduble object itself, or its name str)
 :type module: module or str
 :return: True if the module is patched else False
 :rtype: bool
 """
 return module in already_patched or getattr(module, '__name__', None) in already_patched

def copy_attributes(source, destination, ignore=[], srckeys=None):
 """Copy properties from `source` to `destination`

 :param module source: source module
 :param dict destination: destination dict
 :param list ignore: list of properties that should not be copied
 :param list srckeys: list of keys to copy, if the source's __all__ is untrustworthy
 """
 if srckeys is None:
 srckeys = source.__all__

 d = {name: getattr(source, name) for name in srckeys
 if not (name.startswith('__') or name in ignore)}
 destination.update(d)

def _green_os_modules():
 from guv.green import os

 return [('os', os)]

def _green_select_modules():
 from guv.green import select

 return [('select', select)]

def _green_socket_modules():
 from guv.green import socket

 try:
 from guv.green import ssl

 return [('socket', socket), ('ssl', ssl)]
 except ImportError:
 return [('socket', socket)]

def _green_thread_modules():
 from guv.green import queue, thread, threading

 return [('queue', queue), ('_thread', thread), ('threading', threading)]

def _green_time_modules():
 from guv.green import time

 return [('time', time)]

def _green_builtins():
 try:
 from guv.green import builtin

 return [('__builtin__', builtin)]
 except ImportError:
 return []

 © Copyright 2014, V G.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_modules/guv/greenthread.html

 Navigation

 		
 index

 		
 modules |

 		guv 0.35.2 documentation »

 		Module code »

 Source code for guv.greenthread

from collections import deque
import sys
import greenlet

from . import event, hubs
from .support import reraise

__all__ = ['sleep', 'spawn', 'spawn_n', 'kill', 'spawn_after', 'GreenThread']

[docs]def sleep(seconds=0):
 """Yield control to the hub until at least `seconds` have elapsed

 :param float seconds: time to sleep for
 """
 hub = hubs.get_hub()
 current = greenlet.getcurrent()
 assert hub is not current, 'do not call blocking functions from the hub'
 timer = hub.schedule_call_global(seconds, current.switch)
 try:
 hub.switch()
 finally:
 timer.cancel()

[docs]def spawn_n(func, *args, **kwargs):
 """Spawn a greenlet

 Execution control returns immediately to the caller; the created greenlet is scheduled to be run
 at the start of the next event loop iteration, after other scheduled greenlets, but before
 greenlets waiting for I/O events.

 This is faster than :func:`spawn`, but it is not possible to retrieve the return value of
 the greenlet, or whether it raised any exceptions. It is fastest if there are no keyword
 arguments.

 If an exception is raised in the function, a stack trace is printed; the print can be
 disabled by calling :func:`guv.debug.hub_exceptions` with False.

 :return: greenlet object
 :rtype: greenlet.greenlet
 """
 hub = hubs.get_hub()
 g = greenlet.greenlet(func, parent=hub)
 hub.schedule_call_now(g.switch, *args, **kwargs)
 return g

[docs]def spawn(func, *args, **kwargs):
 """Spawn a GreenThread

 Execution control returns immediately to the caller; the created GreenThread is scheduled to
 be run at the start of the next event loop iteration, after other scheduled greenlets,
 but before greenlets waiting for I/O events.

 :return: GreenThread object which can be used to retrieve the return value of the function
 :rtype: GreenThread
 """
 hub = hubs.get_hub()
 g = GreenThread(hub)
 hub.schedule_call_now(g.switch, func, *args, **kwargs)
 return g

[docs]def spawn_after(seconds, func, *args, **kwargs):
 """Spawn a GreenThread after `seconds` have elapsed

 Execution control returns immediately to the caller.

 To cancel the spawn and prevent *func* from being called, call :meth:`GreenThread.cancel` on the
 returned GreenThread. This will not abort the function if it's already started running, which is
 generally the desired behavior. If terminating *func* regardless of whether it's started or not
 is the desired behavior, call :meth:`GreenThread.kill`.

 :return: GreenThread object which can be used to retrieve the return value of the function
 :rtype: GreenThread
 """
 hub = hubs.get_hub()
 g = GreenThread(hub)
 hub.schedule_call_global(seconds, g.switch, func, *args, **kwargs)
 return g

def _spawn_n(seconds, func, args, kwargs):
 hub = hubs.get_hub()
 g = greenlet.greenlet(func, parent=hub)
 t = hub.schedule_call_global(seconds, g.switch, *args, **kwargs)
 return t, g

[docs]class GreenThread(greenlet.greenlet):
 """The GreenThread class is a type of Greenlet which has the additional property of being able
 to retrieve the return value of the main function. Do not construct GreenThread objects
 directly; call :func:`spawn` to get one.
 """

[docs] def __init__(self, parent):
 """
 :param parent: parent greenlet
 :type parent: greenlet.greenlet
 """
 greenlet.greenlet.__init__(self, self.main, parent)
 self._exit_event = event.Event()
 self._resolving_links = False

[docs] def wait(self):
 """Return the result of the main function of this GreenThread

 If the result is a normal return value, :meth:`wait` returns it. If it raised an exception,
 :meth:`wait` will raise the same exception (though the stack trace will unavoidably contain
 some frames from within the GreenThread module).
 """
 return self._exit_event.wait()

[docs] def link(self, func, *curried_args, **curried_kwargs):
 """Set up a function to be called with the results of the GreenThread

 The function must have the following signature::

 func(gt, [curried args/kwargs])

 When the GreenThread finishes its run, it calls *func* with itself and with the `curried
 arguments <http://en.wikipedia.org/wiki/Currying>`_ supplied at link-time. If the function
 wants to retrieve the result of the GreenThread, it should call wait() on its first
 argument.

 Note that *func* is called within execution context of the GreenThread, so it is possible to
 interfere with other linked functions by doing things like switching explicitly to another
 GreenThread.
 """
 self._exit_funcs = getattr(self, '_exit_funcs', deque())
 self._exit_funcs.append((func, curried_args, curried_kwargs))
 if self._exit_event.ready():
 self._resolve_links()

[docs] def unlink(self, func, *curried_args, **curried_kwargs):
 """Remove linked function set by :meth:`link`

 Remove successfully return True, otherwise False
 """
 if not getattr(self, '_exit_funcs', None):
 return False
 try:
 self._exit_funcs.remove((func, curried_args, curried_kwargs))
 return True
 except ValueError:
 return False

 def main(self, function, *args, **kwargs):
 try:
 result = function(*args, **kwargs)
 except:
 self._exit_event.send_exception(*sys.exc_info())
 self._resolve_links()
 raise
 else:
 self._exit_event.send(result)
 self._resolve_links()

 def _resolve_links(self):
 # ca and ckw are the curried function arguments
 if self._resolving_links:
 return
 self._resolving_links = True
 try:
 exit_funcs = getattr(self, '_exit_funcs', deque())
 while exit_funcs:
 f, ca, ckw = exit_funcs.popleft()
 f(self, *ca, **ckw)
 finally:
 self._resolving_links = False

[docs] def kill(self, *throw_args):
 """Kill the GreenThread using :func:`kill`

 After being killed all calls to :meth:`wait` will raise `throw_args` (which default to
 :class:`greenlet.GreenletExit`).
 """
 return kill(self, *throw_args)

[docs] def cancel(self, *throw_args):
 """Kill the GreenThread using :func:`kill`, but only if it hasn't already started running

 After being canceled, all calls to :meth:`wait` will raise `throw_args` (which default to
 :class:`greenlet.GreenletExit`).
 """
 return cancel(self, *throw_args)

def cancel(g, *throw_args):
 """Cancel the target greenlet/GreenThread if it hasn't already started

 This is like :func:`kill`, but only has an effect if the target greenlet/GreenThread has not
 yet started.
 """
 if not g:
 kill(g, *throw_args)

[docs]def kill(g, *throw_args):
 """Terminate the target greenlet/GreenThread by raising an exception into it

 Whatever that GreenThread might be doing, be it waiting for I/O or another primitive, it sees an
 exception right away.

 By default, this exception is GreenletExit, but a specific exception may be specified.
 `throw_args` should be the same as the arguments to raise; either an exception instance or an
 exc_info tuple.

 Calling :func:`kill` causes the calling greenlet to cooperatively yield.

 :param g: target greenlet/GreenThread to kill
 :type g: greenlet.greenlet or GreenThread
 """
 if g.dead:
 return

 hub = hubs.get_hub()
 if not g:
 # greenlet hasn't started yet and therefore throw won't work on its own; semantically we
 # want it to be as though the main method never got called
 def just_raise(*a, **kw):
 if throw_args:
 reraise(throw_args[0], throw_args[1], throw_args[2])
 else:
 raise greenlet.GreenletExit()

 g.run = just_raise
 if isinstance(g, GreenThread):
 # it's a GreenThread object, so we want to call its main method to take advantage of
 # the notification
 try:
 g.main(just_raise, (), {})
 except:
 pass

 current = greenlet.getcurrent()
 if current is not hub:
 # arrange to wake the caller back up immediately
 hub.schedule_call_now(current.switch)

 g.throw(*throw_args)

 © Copyright 2014, V G.
 Created using Sphinx 1.3.1.

_modules/guv/wsgi.html

 Navigation

 		
 index

 		
 modules |

 		guv 0.35.2 documentation »

 		Module code »

 Source code for guv.wsgi

import sys
import time
import traceback
import logging
from datetime import datetime
from greenlet import GreenletExit
from urllib.parse import unquote
import socket

from . import version_info, gyield
from .server import Server
from .exceptions import BROKEN_SOCK
from .support import reraise

log = logging.getLogger('guv.wsgi')
log.setLevel(logging.INFO)

DEFAULT_MAX_SIMULTANEOUS_REQUESTS = 1024
DEFAULT_MAX_HTTP_VERSION = 'HTTP/1.1'
MAX_REQUEST_LINE = 8192
MAX_HEADER_LINE = 8192
MAX_TOTAL_HEADER_SIZE = 65536
MINIMUM_CHUNK_SIZE = 4096

__all__ = ['serve', 'format_date_time']

weekday and month names for HTTP date/time formatting; always English!
_weekdayname = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
_monthname = [None, # dummy so we can use 1-based month numbers
 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]

_INTERNAL_ERROR_STATUS = '500 Internal Server Error'
_INTERNAL_ERROR_BODY = 'Internal Server Error'
_INTERNAL_ERROR_HEADERS = [('Content-Type', 'text/plain'),
 ('Connection', 'close'),
 ('Content-Length', str(len(_INTERNAL_ERROR_BODY)))]
_REQUEST_TOO_LONG_RESPONSE = "HTTP/1.1 414 Request URI Too Long\r\n" \
 "Connection: close\r\nContent-length: 0\r\n\r\n"
_BAD_REQUEST_RESPONSE = "HTTP/1.1 400 Bad Request\r\nConnection: close\r\nContent-length: 0\r\n\r\n"
_CONTINUE_RESPONSE = "HTTP/1.1 100 Continue\r\n\r\n"

def b(s):
 return s.encode('latin-1')

[docs]def format_date_time(timestamp):
 """Format a unix timestamp into an HTTP standard string
 """
 year, month, day, hh, mm, ss, wd, _y, _z = time.gmtime(timestamp)
 return "%s, %02d %3s %4d %02d:%02d:%02d GMT" % \
 (_weekdayname[wd], day, _monthname[month], year, hh, mm, ss)

class Input:
 def __init__(self, rfile, content_length, socket=None, chunked_input=False):
 self.rfile = rfile
 self.content_length = content_length
 self.socket = socket
 self.position = 0
 self.chunked_input = chunked_input
 self.chunk_length = -1

 def _discard(self):
 if self.socket is None and \
 (self.position < (self.content_length or 0) or self.chunked_input):
 # read and discard body
 while 1:
 d = self.read(16384)
 if not d:
 break

 def _send_100_continue(self):
 if self.socket is not None:
 self.socket.sendall(_CONTINUE_RESPONSE)
 self.socket = None

 def _do_read(self, length=None, use_readline=False):
 if use_readline:
 reader = self.rfile.readline
 else:
 reader = self.rfile.read
 content_length = self.content_length
 if content_length is None:
 # Either Content-Length or "Transfer-Encoding: chunked" must be present in a request
 # with a body if it was chunked, then this function would have not been called
 return ''
 self._send_100_continue()
 left = content_length - self.position
 if length is None:
 length = left
 elif length > left:
 length = left
 if not length:
 return ''
 read = reader(length)
 self.position += len(read)
 if len(read) < length:
 if (use_readline and not read.endswith("\n")) or not use_readline:
 raise IOError("unexpected end of file while reading request at position {}"
 .format(self.position))

 return read

 def _chunked_read(self, length=None, use_readline=False):
 rfile = self.rfile
 self._send_100_continue()

 if length == 0:
 return ""

 if length < 0:
 length = None

 if use_readline:
 reader = self.rfile.readline
 else:
 reader = self.rfile.read

 response = []
 while self.chunk_length != 0:
 maxreadlen = self.chunk_length - self.position
 if length is not None and length < maxreadlen:
 maxreadlen = length

 if maxreadlen > 0:
 data = reader(maxreadlen)
 if not data:
 self.chunk_length = 0
 raise IOError("unexpected end of file while parsing chunked data")

 datalen = len(data)
 response.append(data)

 self.position += datalen
 if self.chunk_length == self.position:
 rfile.readline()

 if length is not None:
 length -= datalen
 if length == 0:
 break
 if use_readline and data[-1] == "\n":
 break
 else:
 line = rfile.readline()
 if not line.endswith("\n"):
 self.chunk_length = 0
 raise IOError("unexpected end of file while reading chunked data header")
 self.chunk_length = int(line.split(";", 1)[0], 16)
 self.position = 0
 if self.chunk_length == 0:
 rfile.readline()
 return ''.join(response)

 def read(self, length=None):
 if self.chunked_input:
 return self._chunked_read(length)
 return self._do_read(length)

 def readline(self, size=None):
 if self.chunked_input:
 return self._chunked_read(size, True)
 else:
 return self._do_read(size, use_readline=True)

 def readlines(self, hint=None):
 return list(self)

 def __iter__(self):
 return self

 def next(self):
 line = self.readline()
 if not line:
 raise StopIteration
 return line

from http import client

class OldMessage(client.HTTPMessage):
 def __init__(self, **kwargs):
 super().__init__(**kwargs)
 self.status = ''

 def getheader(self, name, default=None):
 return self.get(name, default)

 @property
 def headers(self):
 for key, value in self._headers:
 yield '%s: %s\r\n' % (key, value)

 @property
 def typeheader(self):
 return self.get('content-type')

def headers_factory(fp, *args):
 try:
 ret = client.parse_headers(fp, _class=OldMessage)
 except client.LineTooLong:
 ret = OldMessage()
 ret.status = 'Line too long'
 return ret

class WSGIHandler:
 protocol_version = 'HTTP/1.1'

 def __init__(self, client_sock, address, server):
 self.MessageClass = headers_factory
 self.socket = client_sock
 self.client_address = address
 self.server = server
 self.application = self.server.application
 self.rfile = client_sock.makefile('rb', MINIMUM_CHUNK_SIZE)

 # set up instance attributes
 self.requestline = None
 self.status = None
 self.time_start = None
 self.time_finish = None
 self.headers = None
 self.content_length = None
 self.close_connection = None
 self.response_length = None
 self.environ = None
 self.response_use_chunked = None
 self.headers_sent = None
 self.result = None
 self.code = None
 self.response_headers = None
 self.provided_date = None
 self.provided_content_length = None

 def handle(self):
 try:
 while self.socket is not None:
 self.time_start = time.time()
 self.time_finish = 0
 result = self.handle_one_request()

 if result is None:
 break

 if result is True:
 gyield()
 continue

 self.status, response_body = result
 self.socket.sendall(response_body)
 if self.time_finish == 0:
 self.time_finish = time.time()
 self.log_request()
 break
 finally:
 if self.socket is not None:
 try:
 try:
 # read out request data to prevent errno 104 Connection reset by peer
 self.socket.recv(16384)
 finally:
 self.socket.close()
 except socket.error:
 pass
 self.socket = None
 self.rfile = None

 return self.time_finish - self.time_start

 def _check_http_version(self):
 version = self.request_version
 if not version.startswith('HTTP/'):
 return False
 version = tuple(int(x) for x in version[5:].split('.'))
 if version[1] < 0 or version < (0, 9) or version >= (2, 0):
 return False
 return True

 def read_request(self, raw_requestline):
 self.requestline = raw_requestline.rstrip().decode()
 words = self.requestline.split()
 if len(words) == 3:
 self.command, self.path, self.request_version = words
 if not self._check_http_version():
 self.log_error('Invalid http version: %r', raw_requestline)
 return
 else:
 self.log_error('Invalid HTTP method: %r', raw_requestline)
 return

 self.headers = self.MessageClass(self.rfile, 0)
 if self.headers.status:
 self.log_error('Invalid headers status: %r', self.headers.status)
 return

 if self.headers.get("transfer-encoding", "").lower() == "chunked":
 try:
 del self.headers["content-length"]
 except KeyError:
 pass

 content_length = self.headers.get("content-length")
 if content_length is not None:
 content_length = int(content_length)
 if content_length < 0:
 self.log_error('Invalid Content-Length: %r', content_length)
 return
 if content_length and self.command in ('HEAD',):
 self.log_error('Unexpected Content-Length')
 return

 self.content_length = content_length

 if self.request_version == "HTTP/1.1":
 conn_type = self.headers.get("Connection", "").lower()
 if conn_type == "close":
 self.close_connection = True
 else:
 self.close_connection = False
 else:
 self.close_connection = True

 return True

 def log_error(self, msg, *args):
 try:
 message = msg % args
 except Exception:
 traceback.print_exc()
 message = '%r %r' % (msg, args)
 try:
 message = '%s: %s' % (self.socket, message)
 except Exception:
 pass
 try:
 sys.stderr.write(message + '\n')
 except Exception:
 traceback.print_exc()

 def read_requestline(self):
 return self.rfile.readline(MAX_REQUEST_LINE)

 def handle_one_request(self):
 """Handle one request

 :return: None if the connection should be closed; True if everything is ok and we can
 proceed to read more requests; tuple[status code, message] if there is an HTTP error
 :rtype: None or bool or tuple[int, str]
 """
 if self.rfile.closed:
 return

 try:
 self.requestline = self.read_requestline()
 except socket.error:
 # "Connection reset by peer" or other socket errors aren't interesting here
 return

 if not self.requestline:
 return

 self.response_length = 0

 if len(self.requestline) >= MAX_REQUEST_LINE:
 return '414', _REQUEST_TOO_LONG_RESPONSE

 try:
 # for compatibility with older versions of pywsgi, we pass self.requestline as an
 # argument there
 if not self.read_request(self.requestline):
 return '400', _BAD_REQUEST_RESPONSE
 except Exception as ex:
 traceback.print_exc()
 log.error('Invalid request: {}'.format(str(ex) or ex.__class__.__name__))
 return '400', _BAD_REQUEST_RESPONSE

 self.environ = self.get_environ()
 try:
 self.handle_one_response()
 except socket.error as ex:
 if ex.args[0] in BROKEN_SOCK:
 log.error(ex)
 return
 else:
 raise

 if self.close_connection:
 return

 if self.rfile.closed:
 return

 return True # everything is ok, read more requests

 def finalize_headers(self):
 if self.provided_date is None:
 self.response_headers.append(('Date', format_date_time(time.time())))

 if self.code not in (304, 204):
 # the reply will include message-body; make sure we have either Content-Length or
 # chunked
 if self.provided_content_length is None:
 if hasattr(self.result, '__len__'):
 self.response_headers.append(
 ('Content-Length', str(sum(len(chunk) for chunk in self.result))))
 else:
 if self.request_version != 'HTTP/1.0':
 self.response_use_chunked = True
 self.response_headers.append(('Transfer-Encoding', 'chunked'))

 def _sendall(self, data):
 try:
 self.socket.sendall(data)
 except socket.error as ex:
 self.status = 'socket error: %s' % ex
 if self.code > 0:
 self.code = -self.code
 raise
 self.response_length += len(data)

 def _write(self, data):
 if not data:
 return
 if self.response_use_chunked:
 # write the chunked encoding
 data = "%x\r\n%s\r\n" % (len(data), data)
 self._sendall(data)

 def write(self, data):
 if self.code in (304, 204) and data:
 raise AssertionError('The %s response must have no body' % self.code)

 if self.headers_sent:
 self._write(data)
 else:
 if not self.status:
 raise AssertionError("The application did not call start_response()")
 self._write_with_headers(data)

 def _write_with_headers(self, data):
 towrite = bytearray()
 self.headers_sent = True
 self.finalize_headers()

 towrite.extend(b('HTTP/1.1 %s\r\n' % self.status))
 for header in self.response_headers:
 towrite.extend(b('%s: %s\r\n' % header))

 towrite.extend(b('\r\n'))
 if data:
 if self.response_use_chunked:
 # write the chunked encoding
 towrite.extend(b("%x\r\n%s\r\n" % (len(data), data)))
 else:
 towrite.extend(data)
 self._sendall(towrite)

 def start_response(self, status, headers, exc_info=None):
 if exc_info:
 try:
 if self.headers_sent:
 # re-raise original exception if headers sent
 reraise(exc_info[0], exc_info[1], exc_info[2])
 finally:
 # avoid dangling circular ref
 exc_info = None
 self.code = int(status.split(' ', 1)[0])
 self.status = status
 self.response_headers = headers

 provided_connection = None
 self.provided_date = None
 self.provided_content_length = None

 for header, value in headers:
 header = header.lower()
 if header == 'connection':
 provided_connection = value
 elif header == 'date':
 self.provided_date = value
 elif header == 'content-length':
 self.provided_content_length = value

 if self.request_version == 'HTTP/1.0' and provided_connection is None:
 headers.append(('Connection', 'close'))
 self.close_connection = True
 elif provided_connection == 'close':
 self.close_connection = True

 if self.code in (304, 204):
 if self.provided_content_length is not None and self.provided_content_length != '0':
 msg = 'Invalid Content-Length for %s response: %r (must be absent or zero)' % (
 self.code, self.provided_content_length)
 raise AssertionError(msg)

 return self.write

 def log_request(self):
 log.debug(self.format_request())

 def format_request(self):
 now = datetime.now().replace(microsecond=0)
 length = self.response_length or '-'
 if self.time_finish:
 delta = '%.6f' % (self.time_finish - self.time_start)
 else:
 delta = '-'
 client_address = self.client_address[0] if isinstance(self.client_address,
 tuple) else self.client_address
 return '%s [%s] "%s" -> %s %s %s' % (
 client_address or '-', now, getattr(self, 'requestline', ''),
 (getattr(self, 'status', None) or '000').split()[0], length, delta)

 def process_result(self):
 for data in self.result:
 if data:
 self.write(data)
 if self.status and not self.headers_sent:
 self.write('')
 if self.response_use_chunked:
 self.socket.sendall('0\r\n\r\n')
 self.response_length += 5

 def run_application(self):
 self.result = self.application(self.environ, self.start_response)
 self.process_result()

 def handle_one_response(self):
 self.time_start = time.time()
 self.status = None
 self.headers_sent = False

 self.result = None
 self.response_use_chunked = False
 self.response_length = 0

 try:
 try:
 self.run_application()
 finally:
 close = getattr(self.result, 'close', None)
 if close is not None:
 close()
 self.wsgi_input._discard()
 except Exception as e:
 self.handle_error(*sys.exc_info())
 finally:
 self.time_finish = time.time()
 self.log_request()

 def handle_error(self, type, value, tb):
 if not issubclass(type, GreenletExit):
 self.server.loop.handle_error(self.environ, type, value, tb)
 del tb
 if self.response_length:
 self.close_connection = True
 else:
 self.start_response(_INTERNAL_ERROR_STATUS, _INTERNAL_ERROR_HEADERS[:])
 self.write(_INTERNAL_ERROR_BODY)

 def _headers(self):
 key = None
 value = None
 for header in self.headers.headers:
 if key is not None and header[:1] in " \t":
 value += header
 continue

 if key not in (None, 'CONTENT_TYPE', 'CONTENT_LENGTH'):
 yield 'HTTP_' + key, value.strip()

 key, value = header.split(':', 1)
 key = key.replace('-', '_').upper()

 if key not in (None, 'CONTENT_TYPE', 'CONTENT_LENGTH'):
 yield 'HTTP_' + key, value.strip()

 def get_environ(self):
 env = self.server.get_environ()
 env['REQUEST_METHOD'] = self.command
 env['SCRIPT_NAME'] = ''

 if '?' in self.path:
 path, query = self.path.split('?', 1)
 else:
 path, query = self.path, ''
 env['PATH_INFO'] = unquote(path)
 env['QUERY_STRING'] = query

 if self.headers.typeheader is not None:
 env['CONTENT_TYPE'] = self.headers.typeheader

 length = self.headers.getheader('content-length')
 if length:
 env['CONTENT_LENGTH'] = length
 env['SERVER_PROTOCOL'] = self.request_version

 client_address = self.client_address
 if isinstance(client_address, tuple):
 env['REMOTE_ADDR'] = str(client_address[0])
 env['REMOTE_PORT'] = str(client_address[1])

 for key, value in self._headers():
 if key in env:
 if 'COOKIE' in key:
 env[key] += '; ' + value
 else:
 env[key] += ',' + value
 else:
 env[key] = value

 if env.get('HTTP_EXPECT') == '100-continue':
 socket = self.socket
 else:
 socket = None
 chunked = env.get('HTTP_TRANSFER_ENCODING', '').lower() == 'chunked'
 self.wsgi_input = Input(self.rfile, self.content_length, socket=socket,
 chunked_input=chunked)
 env['wsgi.input'] = self.wsgi_input
 return env

class WSGIServer(Server):
 #: :type: tuple
 server_version = version_info[:2] + sys.version_info[:2]

 base_env = {'GATEWAY_INTERFACE': 'CGI/1.1',
 'SERVER_SOFTWARE': 'guv/%d.%d Python/%d.%d' % server_version,
 'SCRIPT_NAME': '',
 'wsgi.version': (1, 0),
 'wsgi.multithread': False,
 'wsgi.multiprocess': False,
 'wsgi.run_once': False}

 def __init__(self, server_sock, application=None, environ=None):
 super().__init__(server_sock, self.handle_client)

 self.application = application
 self.set_environ(environ)
 self.num_connections = 0

 def set_environ(self, environ=None):
 if environ is not None:
 self.environ = environ
 environ_update = getattr(self, 'environ', None)
 self.environ = self.base_env.copy()
 self.environ['wsgi.url_scheme'] = 'http'
 if environ_update is not None:
 self.environ.update(environ_update)
 if self.environ.get('wsgi.errors') is None:
 self.environ['wsgi.errors'] = sys.stderr

 def get_environ(self):
 return self.environ.copy()

 def init_socket(self):
 self.update_environ()

 def update_environ(self):
 address = self.address
 if isinstance(address, tuple):
 if 'SERVER_NAME' not in self.environ:
 try:
 name = socket.getfqdn(address[0])
 except socket.error:
 name = str(address[0])
 self.environ['SERVER_NAME'] = name
 self.environ.setdefault('SERVER_PORT', str(address[1]))
 else:
 self.environ.setdefault('SERVER_NAME', '')
 self.environ.setdefault('SERVER_PORT', '')

 def handle_client(self, client_sock, address):
 self.num_connections += 1
 # log.debug('Open fd: {0}, Current total number of connections: {1.num_connections}'
 # .format(client_sock.fileno(), self))
 handler = WSGIHandler(client_sock, address, self)
 handler.handle()
 # log.debug('Done with fd: {}'.format(client_sock.fileno()))
 self.num_connections -= 1

[docs]def serve(server_sock, app, log_output=True):
 """Start up a WSGI server handling requests from the supplied server socket

 This function loops forever. The *sock* object will be closed after server exits, but the
 underlying file descriptor will remain open, so if you have a dup() of *sock*, it will remain
 usable.

 :param server_sock: server socket, must be already bound to a port and listening
 :param app: WSGI application callable
 """
 try:
 host, port = server_sock.getsockname()[:2]
 log.info('WSGI server starting up on {}:{}'.format(host, port))

 wsgi_server = WSGIServer(server_sock, app)
 wsgi_server.start()

 except (KeyboardInterrupt, SystemExit):
 log.debug('KeyboardInterrupt, exiting')
 finally:
 log.debug('WSGI server exited')
 try:
 server_sock.close()
 except socket.error as e:
 if e.args[0] not in BROKEN_SOCK:
 traceback.print_exc()

 © Copyright 2014, V G.
 Created using Sphinx 1.3.1.

_modules/guv/queue.html

 Navigation

 		
 index

 		
 modules |

 		guv 0.35.2 documentation »

 		Module code »

 Source code for guv.queue

"""Synchronized queues

This module implements multi-producer, multi-consumer queues that work across greenlets, with the
API similar to the classes found in the standard :mod:`queue` and :class:`multiprocessing
<multiprocessing.Queue>` modules.

A major difference is that queues in this module operate as channels when initialized with `maxsize`
of zero. In such case, both :meth:`~queue.Queue.empty` and :meth:`~queue.Queue.full` return
``True`` and :meth:`~queue.Queue.put` always blocks until a call to :meth:`~queue.Queue.get`
retrieves the item.

An interesting difference, made possible because of GreenThreads, is that
:meth:`~queue.Queue.qsize`, :meth:`~queue.Queue.empty`, and :meth:`~queue.Queue.full` *can* be used
as indicators of whether the subsequent :meth:`~queue.Queue.get` or :meth:`~queue.Queue.put` will
not block. The new methods :meth:`LightQueue.getting` and :meth:`LightQueue.putting` report on
the number of GreenThreads blocking in :meth:`~queue.Queue.put` or :meth:`~queue.Queue.get`
respectively.
"""

import sys
import heapq
import collections
import traceback
from queue import Full, Empty
import greenlet

from guv.event import Event
from guv.hubs import get_hub
from guv.timeout import Timeout

__all__ = ['Queue', 'PriorityQueue', 'LifoQueue', 'LightQueue', 'Full', 'Empty']

_NONE = object()

class Waiter(object):
 """A low level synchronization class.

 Wrapper around greenlet's ``switch()`` and ``throw()`` calls that makes them safe:

 * switching will occur only if the waiting greenlet is executing :meth:`wait`
 method currently. Otherwise, :meth:`switch` and :meth:`throw` are no-ops.
 * any error raised in the greenlet is handled inside :meth:`switch` and :meth:`throw`

 The :meth:`switch` and :meth:`throw` methods must only be called from the :class:`Hub` greenlet.
 The :meth:`wait` method must be called from a greenlet other than :class:`Hub`.
 """
 __slots__ = ['greenlet']

 def __init__(self):
 self.greenlet = None

 def __repr__(self):
 if self.waiting:
 waiting = ' waiting'
 else:
 waiting = ''
 return '<%s at %s%s greenlet=%r>' % (
 type(self).__name__, hex(id(self)), waiting, self.greenlet)

 def __str__(self):
 """
 >>> print(Waiter())
 <Waiter greenlet=None>
 """
 if self.waiting:
 waiting = ' waiting'
 else:
 waiting = ''
 return '<%s%s greenlet=%s>' % (type(self).__name__, waiting, self.greenlet)

 def __nonzero__(self):
 return self.greenlet is not None

 __bool__ = __nonzero__

 @property
 def waiting(self):
 return self.greenlet is not None

 def switch(self, value=None):
 """Wake up the greenlet that is calling wait() currently (if there is one).
 Can only be called from Hub's greenlet.
 """
 assert greenlet.getcurrent() is get_hub(), "Can only use Waiter.switch method from the " \
 "mainloop"
 if self.greenlet is not None:
 try:
 self.greenlet.switch(value)
 except:
 traceback.print_exc()

 def throw(self, *throw_args):
 """Make greenlet calling wait() wake up (if there is a wait()).
 Can only be called from Hub's greenlet.
 """
 assert greenlet.getcurrent() is get_hub(), "Can only use Waiter.switch method from the " \
 "mainloop"
 if self.greenlet is not None:
 try:
 self.greenlet.throw(*throw_args)
 except:
 traceback.print_exc()

 # XXX should be renamed to get() ? and the whole class is called Receiver?
 def wait(self):
 """Wait until switch() or throw() is called.
 """
 assert self.greenlet is None, 'This Waiter is already used by %r' % (self.greenlet,)
 self.greenlet = greenlet.getcurrent()
 try:
 return get_hub().switch()
 finally:
 self.greenlet = None

[docs]class LightQueue(object):
 """
 This is a variant of Queue that behaves mostly like the standard :class:`Queue`. It differs by
 not supporting the :meth:`~queue.Queue.task_done` or :meth:`~queue.Queue.join` methods, and is a
 little faster for not having that overhead.
 """

 def __init__(self, maxsize=None):
 if maxsize is None or maxsize < 0: # None is not comparable in 3.x
 self.maxsize = None
 else:
 self.maxsize = maxsize
 self.getters = set()
 self.putters = set()
 self._event_unlock = None
 self._init(maxsize)

 # QQQ make maxsize into a property with setter that schedules unlock if necessary

 def _init(self, maxsize):
 self.queue = collections.deque()

 def _get(self):
 return self.queue.popleft()

 def _put(self, item):
 self.queue.append(item)

 def __repr__(self):
 return '<%s at %s %s>' % (type(self).__name__, hex(id(self)), self._format())

 def __str__(self):
 return '<%s %s>' % (type(self).__name__, self._format())

 def _format(self):
 result = 'maxsize=%r' % (self.maxsize,)
 if getattr(self, 'queue', None):
 result += ' queue=%r' % self.queue
 if self.getters:
 result += ' getters[%s]' % len(self.getters)
 if self.putters:
 result += ' putters[%s]' % len(self.putters)
 if self._event_unlock is not None:
 result += ' unlocking'
 return result

[docs] def qsize(self):
 """Return the size of the queue."""
 return len(self.queue)

[docs] def resize(self, size):
 """Resizes the queue's maximum size.

 If the size is increased, and there are putters waiting, they may be woken up."""
 if (self.maxsize is not None and
 (size is None or size > self.maxsize)): # None is not comparable in 3.x
 # Maybe wake some stuff up
 self._schedule_unlock()
 self.maxsize = size

[docs] def putting(self):
 """Returns the number of GreenThreads that are blocked waiting to put
 items into the queue."""
 return len(self.putters)

[docs] def getting(self):
 """Returns the number of GreenThreads that are blocked waiting on an
 empty queue."""
 return len(self.getters)

[docs] def empty(self):
 """Return ``True`` if the queue is empty, ``False`` otherwise."""
 return not self.qsize()

[docs] def full(self):
 """Return ``True`` if the queue is full, ``False`` otherwise.

 ``Queue(None)`` is never full.
 """
 return self.maxsize is not None and self.qsize() >= self.maxsize # None is not
 # comparable in 3.x

[docs] def put(self, item, block=True, timeout=None):
 """Put an item into the queue.

 If optional arg `block` is true and `timeout` is ``None`` (the default),
 block if necessary until a free slot is available. If `timeout` is
 a positive number, it blocks at most `timeout` seconds and raises
 the :class:`queue.Full` exception if no free slot was available within that time.
 Otherwise (`block` is false), put an item on the queue if a free slot
 is immediately available, else raise the :class:`queue.Full` exception (`timeout`
 is ignored in that case).
 """
 if self.maxsize is None or self.qsize() < self.maxsize:
 # there's a free slot, put an item right away
 self._put(item)
 if self.getters:
 self._schedule_unlock()
 elif not block and get_hub() is greenlet.getcurrent():
 # we're in the mainloop, so we cannot wait; we can switch() to other greenlets though
 # find a getter and deliver an item to it
 while self.getters:
 getter = self.getters.pop()
 if getter:
 self._put(item)
 item = self._get()
 getter.switch(item)
 return
 raise Full
 elif block:
 waiter = ItemWaiter(item)
 self.putters.add(waiter)
 timeout = Timeout(timeout, Full)
 try:
 if self.getters:
 self._schedule_unlock()
 result = waiter.wait()
 assert result is waiter, "Invalid switch into Queue.put: %r" % (result,)
 if waiter.item is not _NONE:
 self._put(item)
 finally:
 timeout.cancel()
 self.putters.discard(waiter)
 else:
 raise Full

[docs] def put_nowait(self, item):
 """Put an item into the queue without blocking.

 Only enqueue the item if a free slot is immediately available.
 Otherwise raise the :class:`queue.Full` exception.
 """
 self.put(item, False)

[docs] def get(self, block=True, timeout=None):
 """Remove and return an item from the queue.

 If optional args `block` is true and `timeout` is ``None`` (the default),
 block if necessary until an item is available. If `timeout` is a positive number,
 it blocks at most `timeout` seconds and raises the :class:`queue.Empty` exception
 if no item was available within that time. Otherwise (`block` is false), return
 an item if one is immediately available, else raise the :class:`queue.Empty` exception
 (`timeout` is ignored in that case).
 """
 if self.qsize():
 if self.putters:
 self._schedule_unlock()
 return self._get()
 elif not block and get_hub() is greenlet.getcurrent():
 # special case to make get_nowait() runnable in the mainloop greenlet
 # there are no items in the queue; try to fix the situation by unlocking putters
 while self.putters:
 putter = self.putters.pop()
 if putter:
 putter.switch(putter)
 if self.qsize():
 return self._get()
 raise Empty
 elif block:
 waiter = Waiter()
 timeout = Timeout(timeout, Empty)
 try:
 self.getters.add(waiter)
 if self.putters:
 self._schedule_unlock()
 return waiter.wait()
 finally:
 self.getters.discard(waiter)
 timeout.cancel()
 else:
 raise Empty

[docs] def get_nowait(self):
 """Remove and return an item from the queue without blocking.

 Only get an item if one is immediately available. Otherwise
 raise the :class:`queue.Empty` exception.
 """
 return self.get(False)

 def _unlock(self):
 try:
 while True:
 if self.qsize() and self.getters:
 getter = self.getters.pop()
 if getter:
 try:
 item = self._get()
 except:
 getter.throw(*sys.exc_info())
 else:
 getter.switch(item)
 elif self.putters and self.getters:
 putter = self.putters.pop()
 if putter:
 getter = self.getters.pop()
 if getter:
 item = putter.item
 # this makes greenlet calling put() not to call _put() again
 putter.item = _NONE
 self._put(item)
 item = self._get()
 getter.switch(item)
 putter.switch(putter)
 else:
 self.putters.add(putter)
 elif (self.putters and (
 self.getters or self.maxsize is None or self.qsize() < self.maxsize)):
 putter = self.putters.pop()
 putter.switch(putter)
 else:
 break
 finally:
 self._event_unlock = None # QQQ maybe it's possible to obtain this info from libevent?
 # i.e. whether this event is pending _OR_ currently executing
 # testcase: 2 greenlets: while True: q.put(q.get()) - nothing else has a change to
 # execute
 # to avoid this, schedule unlock with timer(0, ...) once in a while

 def _schedule_unlock(self):
 if self._event_unlock is None:
 # self._event_unlock = get_hub().schedule_call_global(0, self._unlock)
 self._event_unlock = get_hub().schedule_call_now(self._unlock)

class ItemWaiter(Waiter):
 __slots__ = ['item']

 def __init__(self, item):
 Waiter.__init__(self)
 self.item = item

[docs]class Queue(LightQueue):
 """Create a queue object with a given maximum size

 If `maxsize` is less than zero or ``None``, the queue size is infinite.

 ``Queue(0)`` is a channel, that is, its :meth:`put` method always blocks until the item is
 delivered. (This is unlike the standard :class:`queue.Queue`, where 0 means infinite size).

 In all other respects, this Queue class resembles the standard library, :class:`queue.Queue`.
 """

 def __init__(self, maxsize=None):
 LightQueue.__init__(self, maxsize)
 self.unfinished_tasks = 0
 self._cond = Event()

 def _format(self):
 result = LightQueue._format(self)
 if self.unfinished_tasks:
 result += ' tasks=%s _cond=%s' % (self.unfinished_tasks, self._cond)
 return result

 def _put(self, item):
 LightQueue._put(self, item)
 self._put_bookkeeping()

 def _put_bookkeeping(self):
 self.unfinished_tasks += 1
 if self._cond.ready():
 self._cond.reset()

[docs] def task_done(self):
 """Indicate that a formerly enqueued task is complete. Used by queue consumer threads.
 For each :meth:`get <Queue.get>` used to fetch a task, a subsequent call to
 :meth:`task_done` tells the queue
 that the processing on the task is complete.

 If a :meth:`join` is currently blocking, it will resume when all items have been processed
 (meaning that a :meth:`task_done` call was received for every item that had been
 :meth:`put <Queue.put>` into the queue).

 Raises a :exc:`ValueError` if called more times than there were items placed in the queue.
 """

 if self.unfinished_tasks <= 0:
 raise ValueError('task_done() called too many times')
 self.unfinished_tasks -= 1
 if self.unfinished_tasks == 0:
 self._cond.send(None)

[docs] def join(self):
 """Block until all items in the queue have been gotten and processed

 The count of unfinished tasks goes up whenever an item is added to the queue.
 The count goes down whenever a consumer thread calls :meth:`task_done` to indicate
 that the item was retrieved and all work on it is complete. When the count of
 unfinished tasks drops to zero, :meth:`join` unblocks.
 """
 if self.unfinished_tasks > 0:
 self._cond.wait()

[docs]class PriorityQueue(Queue):
 """A subclass of :class:`Queue` that retrieves entries in priority order (lowest first)

 Entries are typically tuples of the form: ``(priority number, data)``.
 """

 def _init(self, maxsize):
 self.queue = []

 def _put(self, item, heappush=heapq.heappush):
 heappush(self.queue, item)
 self._put_bookkeeping()

 def _get(self, heappop=heapq.heappop):
 return heappop(self.queue)

[docs]class LifoQueue(Queue):
 """A subclass of :class:`Queue` that retrieves most recently added entries first
 """

 def _init(self, maxsize):
 self.queue = []

 def _put(self, item):
 self.queue.append(item)
 self._put_bookkeeping()

 def _get(self):
 return self.queue.pop()

 © Copyright 2014, V G.
 Created using Sphinx 1.3.1.

_modules/guv/greenpool.html

 Navigation

 		
 index

 		
 modules |

 		guv 0.35.2 documentation »

 		Module code »

 Source code for guv.greenpool

import traceback
import greenlet

from . import event, greenthread, queue, semaphore

__all__ = ['GreenPool', 'GreenPile']

DEBUG = True

[docs]class GreenPool:
 """Pool of greenlets/GreenThreads

 This class manages a pool of greenlets/GreenThreads
 """

[docs] def __init__(self, size=1000):
 """
 :param size: maximum number of active greenlets
 """
 self.size = size
 self.coroutines_running = set()
 self.sem = semaphore.Semaphore(size)
 self.no_coros_running = event.Event()

[docs] def resize(self, new_size):
 """Change the max number of greenthreads doing work at any given time

 If resize is called when there are more than *new_size* greenthreads already working on
 tasks, they will be allowed to complete but no new tasks will be allowed to get launched
 until enough greenthreads finish their tasks to drop the overall quantity below *new_size*.
 Until then, the return value of free() will be negative.
 """
 size_delta = new_size - self.size
 self.sem.counter += size_delta
 self.size = new_size

[docs] def running(self):
 """Return the number of greenthreads that are currently executing functions in the GreenPool
 """
 return len(self.coroutines_running)

[docs] def free(self):
 """Return the number of greenthreads available for use

 If zero or less, the next call to :meth:`spawn` or :meth:`spawn_n` will block the calling
 greenthread until a slot becomes available."""
 return self.sem.counter

[docs] def spawn(self, function, *args, **kwargs):
 """Run the *function* with its arguments in its own green thread

 Returns the :class:`GreenThread <guv.greenthread.GreenThread>` object that is running
 the function, which can be used to retrieve the results.

 If the pool is currently at capacity, ``spawn`` will block until one of the running
 greenthreads completes its task and frees up a slot.

 This function is reentrant; *function* can call ``spawn`` on the same pool without risk of
 deadlocking the whole thing.
 """
 # if reentering an empty pool, don't try to wait on a coroutine freeing
 # itself -- instead, just execute in the current coroutine
 current = greenlet.getcurrent()
 if self.sem.locked() and current in self.coroutines_running:
 # a bit hacky to use the GT without switching to it
 gt = greenthread.GreenThread(current)
 gt.main(function, *args, **kwargs)
 return gt
 else:
 self.sem.acquire()
 gt = greenthread.spawn(function, *args, **kwargs)
 if not self.coroutines_running:
 self.no_coros_running = event.Event()
 self.coroutines_running.add(gt)
 gt.link(self._spawn_done)
 return gt

 def _spawn_n_impl(self, func, args, kwargs, coro):
 try:
 try:
 func(*args, **kwargs)
 except (KeyboardInterrupt, SystemExit, greenlet.GreenletExit):
 raise
 except:
 if DEBUG:
 traceback.print_exc()
 finally:
 if coro is None:
 return
 else:
 coro = greenlet.getcurrent()
 self._spawn_done(coro)

[docs] def spawn_n(self, function, *args, **kwargs):
 """Create a greenthread to run the `function` like :meth:`spawn`, but return None

 The difference is that :meth:`spawn_n` returns None; the results of `function` are not
 retrievable.
 """
 # if reentering an empty pool, don't try to wait on a coroutine freeing
 # itself -- instead, just execute in the current coroutine
 current = greenlet.getcurrent()
 if self.sem.locked() and current in self.coroutines_running:
 self._spawn_n_impl(function, args, kwargs, None)
 else:
 self.sem.acquire()
 g = greenthread.spawn_n(self._spawn_n_impl, function, args, kwargs, True)
 if not self.coroutines_running:
 self.no_coros_running = event.Event()
 self.coroutines_running.add(g)

[docs] def waitall(self):
 """Wait until all greenthreads in the pool are finished working
 """
 assert greenlet.getcurrent() not in self.coroutines_running, \
 "Calling waitall() from within one of the " \
 "GreenPool's greenthreads will never terminate."
 if self.running():
 self.no_coros_running.wait()

 def _spawn_done(self, coro):
 self.sem.release()
 if coro is not None:
 self.coroutines_running.remove(coro)
 # if done processing (no more work is waiting for processing), we can finish off any
 # waitall() calls that might be pending
 if self.sem.balance == self.size:
 self.no_coros_running.send(None)

[docs] def waiting(self):
 """Return the number of greenthreads waiting to spawn.
 """
 if self.sem.balance < 0:
 return -self.sem.balance
 else:
 return 0

 def _do_map(self, func, it, gi):
 for args in it:
 gi.spawn(func, *args)
 gi.spawn(return_stop_iteration)

[docs] def starmap(self, function, iterable):
 """Apply each item in `iterable` to `function`

 Each item in `iterable` must be an iterable itself, passed to the function as expanded
 positional arguments. This behaves the same way as :func:`itertools.starmap`, except that
 `func` is executed in a separate green thread for each item, with the concurrency limited by
 the pool's size. In operation, starmap consumes a constant amount of memory, proportional to
 the size of the pool, and is thus suited for iterating over extremely long input lists.
 """
 if function is None:
 function = lambda *args: args

 gi = GreenMap(self.size)
 greenthread.spawn_n(self._do_map, function, iterable, gi)
 return gi

def return_stop_iteration():
 return StopIteration()

[docs]class GreenPile:
 """An abstraction representing a set of I/O-related tasks

 Construct a GreenPile with an existing GreenPool object. The GreenPile will then use that
 pool's concurrency as it processes its jobs. There can be many GreenPiles associated with a
 single GreenPool.

 A GreenPile can also be constructed standalone, not associated with any GreenPool. To do this,
 construct it with an integer size parameter instead of a GreenPool.

 It is not advisable to iterate over a GreenPile in a different greenlet than the one which is
 calling spawn. The iterator will exit early in that situation.
 """

[docs] def __init__(self, size_or_pool=1000):
 """
 :param size_or_pool: either an existing GreenPool object, or the size a new one to create
 :type size_or_pool: int or GreenPool
 """
 if isinstance(size_or_pool, GreenPool):
 self.pool = size_or_pool
 else:
 self.pool = GreenPool(size_or_pool)
 self.waiters = queue.LightQueue()
 self.used = False
 self.counter = 0

[docs] def spawn(self, func, *args, **kwargs):
 """Run `func` in its own GreenThread

 The Result is available by iterating over the GreenPile object.

 :param Callable func: function to call
 :param args: positional args to pass to `func`
 :param kwargs: keyword args to pass to `func`
 """
 self.used = True
 self.counter += 1
 try:
 gt = self.pool.spawn(func, *args, **kwargs)
 self.waiters.put(gt)
 except:
 self.counter -= 1
 raise

 def __iter__(self):
 return self

[docs] def next(self):
 """Wait for the next result, suspending the current GreenThread until it is available

 :raise StopIteration: when there are no more results.
 """
 if self.counter == 0 and self.used:
 raise StopIteration()
 try:
 return self.waiters.get().wait()
 finally:
 self.counter -= 1

 __next__ = next

this is identical to GreenPile but it blocks on spawn if the results
aren't consumed, and it doesn't generate its own StopIteration exception,
instead relying on the spawning process to send one in when it's done

class GreenMap(GreenPile):
 def __init__(self, size_or_pool):
 super(GreenMap, self).__init__(size_or_pool)
 self.waiters = queue.LightQueue(maxsize=self.pool.size)

 def next(self):
 try:
 val = self.waiters.get().wait()
 if isinstance(val, StopIteration):
 raise val
 else:
 return val
 finally:
 self.counter -= 1

 __next__ = next

 © Copyright 2014, V G.
 Created using Sphinx 1.3.1.

_modules/guv/hubs/switch.html

 Navigation

 		
 index

 		
 modules |

 		guv 0.35.2 documentation »

 		Module code »

 Source code for guv.hubs.switch

import greenlet

from .hub import get_hub
from ..timeout import Timeout

__all__ = ['gyield', 'trampoline']

[docs]def gyield(switch_back=True):
 """Yield to other greenlets

 This is a cooperative yield which suspends the current greenlet and allows other greenlets to
 run by switching to the hub.

 - If `switch_back` is True (default), the current greenlet is resumed at the beginning of the
 next event loop iteration, before the loop polls for I/O and calls any I/O callbacks. This
 is the intended use for this function the vast majority of the time.
 - If `switch_back` is False, the hub will will never resume the current greenlet (use with
 caution). This is mainly useful for situations where other greenlets (not the hub) are
 responsible for switching back to this greenlet. An example is the Event class,
 where waiters are switched to when the event is ready.

 :param bool switch_back: automatically switch back to this greenlet on the next event loop cycle
 """
 current = greenlet.getcurrent()
 hub = get_hub()
 if switch_back:
 hub.schedule_call_now(current.switch)
 hub.switch()

[docs]def trampoline(fd, evtype, timeout=None, timeout_exc=Timeout):
 """Jump from the current greenlet to the hub and wait until the given file descriptor is ready
 for I/O, or the specified timeout elapses

 If the specified `timeout` elapses before the socket is ready to read or write, `timeout_exc`
 will be raised instead of :func:`trampoline()` returning normally.

 When the specified file descriptor is ready for I/O, the hub internally calls the callback to
 switch back to the current (this) greenlet.

 Conditions:

 - must not be called from the hub greenlet (can be called from any other greenlet)
 - `evtype` must be either :attr:`~guv.const.READ` or :attr:`~guv.const.WRITE` (not possible to
 watch for both simultaneously)

 :param int fd: file descriptor
 :param int evtype: either the constant :attr:`~guv.const.READ` or :attr:`~guv.const.WRITE`
 :param float timeout: (optional) maximum time to wait in seconds
 :param Exception timeout_exc: (optional) timeout Exception class
 """
 #: :type: AbstractHub
 hub = get_hub()
 current = greenlet.getcurrent()

 assert hub is not current, 'do not call blocking functions from the mainloop'
 assert isinstance(fd, int)

 timer = None
 if timeout is not None:
 def _timeout(exc):
 # timeout has passed
 current.throw(exc)

 timer = hub.schedule_call_global(timeout, _timeout, timeout_exc)

 try:
 # add a watcher for this file descriptor
 listener = hub.add(evtype, fd, current.switch, current.throw)

 # switch to the hub
 try:
 return hub.switch()
 finally:
 # log.debug('(trampoline finally) remove listener for fd: {}'.format(fd))
 hub.remove(listener)
 finally:
 if timer is not None:
 timer.cancel()

 © Copyright 2014, V G.
 Created using Sphinx 1.3.1.

